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ABSTRACT 

 

 Functionalities of starch for food and non-food applications are dependent on the 

starch structures and properties, which are affected by both the genetics and the growing 

conditions of the crop. Objectives of this dissertation research were to 1) Understand the 

unique properties of Tibetan hull-less barley starches, their structures, and the impacts of 

growing conditions; and 2) Understand dosage effects of waxy gene on the contents and 

structures of amylose and amylopectin and properties of corn starch; and 3) Understand the 

starch physicochemical properties of Apios mother and child tuber and the mechanism of 

starch development.  

Tibetan hull-less barley varieties, BQ and KQ, were grown at two locations with 

different growing temperatures and rainfall. The BQ starches displayed significantly lower 

onset-gelatinization temperature, larger gelatinization-temperature range, and higher peak 

viscosities than the KQ starches. The differences in starch thermal and pasting properties 

between BQ and KQ starches were attributed to the annealing of starch and enhanced 

amylose-lipid complex formation, resulting from higher growing temperature and more 

rainfall during the development of the KQ starches.  

Reciprocal crossing of isogenic normal and waxy corn lines was conducted to develop 

hybrids with different dosages of waxy gene (3, 2, 1, 0) in the endosperm. The amylose 

content of starch and proportion of extra-long branch-chains negatively correlated with 

dosages of the waxy gene. The proportion of short chains (DP < 17) positively correlated, 

whereas that of intermediate chains (DP 17-30) negatively correlated with dosages of the 

waxy gene. The conclusion gelatinization-temperature and gelatinization temperature-range 

of the starch were positively correlated with the waxy-gene dosage, indicating that amylose 

facilitates gelatinization of the surrounding crystallites of amylopectin. 
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 Apios americana is a wild legume bearing edible tubers. Domestication of Apios is in 

process because of the superior nutritional value of the tuber. The harvested Apios tuber can 

be planted in the following year as the mother tuber to further grow and produce child tubers. 

The Apios mother-tuber starch displayed higher degree of crystallinity, greater gelatinization 

enthalpy-change, longer branch-chain length of amylopectin, and lower pasting viscosity than 

the counterpart child-tuber starch. The mother-tuber starch of Apios 2127 showed two peaks 

of gelatinization, which was attributed to two groups of starch granules having different 

structures and gelatinization temperatures. The group of starch granules with a higher 

gelatinization-temperature was carried over from the previous year and went through a longer 

annealing process during the two-year growing of the tuber. These results of this dissertation 

research demonstrated significant effects of both genetics and the growing conditions on 

starch structures and properties.
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DISSERTATION ORGANIZATION 

  

The dissertation consists of a general introduction and four chapters. The first chapter 

of the dissertation is a review of literature on the background knowledge and information 

relating to the research topics. The second chapter, “Physicochemical properties of Tibetan 

hull-less barley starch,” has been published in Carbohydrate Polymers (Vol.137, pp 525-531); 

The third chapter, “Dosage effects of waxy gene on the structures and properties of corn 

starch,” has been submitted to Carbohydrate Polymers; The fourth chapter, “Characterization 

and development mechanism of Apios americana tuber starch,” has been submitted to 

Carbohydrate Polymers. Literature cited in the Literature Review is listed in the alphabetical 

order of the first author’s last name.
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GENERAL INTRODUCTION 

 

 Starch is the second most abundant carbohydrate on earth next to cellulose. Starch is 

produced in green plants through photosynthesis and complex reactions and is found in 

different organs of the plant, including seed, root, tuber, fruit, stem, and leaf for energy 

storage. Native starch is present in the granular form, and starch granules vary in shapes 

(spherical, oval, polygonal, disk, etc.) and sizes (from <1 to >100 µm), depending on the 

botanical origin and stage of development of the starch. Starch consists of two 

polysaccharides: amylose and amylopectin. Amylose is primarily a linear molecule 

comprised of D-glucopyranose units linked by α-1,4 glycosidic bonds with a few branches. 

Amylopectin has a highly branched structure, consisting of short chains of α-1,4 linked D-

glucopyranose units, connected by α-1,6 glycosidic bonds. The content and structures of 

amylose and amylopectin determine the properties of starch, including thermal and pasting 

properties. Native starch also consists of minor components, such as phospholipids and 

phosphate monoesters, which significantly affect starch properties. 

 Composition and structures of starch molecules are controlled by many genes. For 

example, the biosynthesis of amylose is determined by the Waxy gene, which encodes 

granule-bound starch synthase I (GBSSI). GBSSI is the exclusive enzyme responsible for the 

biosynthesis of amylose and has also been reported to synthesize extra-long branch-chains of 

amylopectin. In the waxy mutant of corn, GBSSI is defective and the waxy corn starch is 

essentially free of amylose. Dosage effects of the waxy gene on the structures and properties 

of corn starch, however, are not fully understood, and effects of GBSSI on the biosynthesis of 

extra-long branch-chains are still being debated. In the study of “Dosage effects of waxy gene 

on the structures and properties of corn starch,” reciprocal crossing of isogenic normal and 

waxy corn was conducted to develop hybrids with different dosages (3, 2, 1, 0) of the waxy 
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gene in the endosperm. The corn starch with different dosages of the waxy gene was 

characterized to elucidate dosage effects of the waxy gene on starch structures and properties 

and to understand the function of GBSSI in the biosynthesis of amylose and amylopectin. 

 Starch structures and properties are also affected by the environment during the 

development of starch granules, such as growing temperature and rainfall. Starch biosynthetic 

enzymes are sensitive to temperature, and the enzyme activity drastically decreases under 

heat stress. The defective enzyme activity, in turn, leads to changes in granule size, amylose 

content, branch-chain length distribution of amylopectin, and starch properties. In addition to 

the impacts on the activities of starch biosynthetic enzymes, high growing temperatures and 

moisture also cause annealing of the starch molecules, resulting in increased onset 

gelatinization-temperature, decrease gelatinization temperature-range, and restricted swelling 

of the starch. In the study of “Physicochemical properties of Tibetan hull-less barley starch,” 

starches isolated from two hull-less barley varieties, Beiqing (BQ) and Kangqing (KQ), were 

characterized. The BQ barleys were grown at a location with a lower temperature and less 

rainfall than the KQ barleys. The BQ starches displayed significantly lower onset 

gelatinization-temperatures and greater peak-viscosities than the KQ starches, despite the 

amylose and lipid contents and branch-chain length of amylopectin were similar between the 

BQ and KQ starches. The differences in starch thermal and pasting properties were attributed 

to the annealing of the KQ starch, resulting from higher growing temperature and more 

rainfall during the development of the KQ starch. 

 In general, less mature starch-granules display smaller granule sizes, less amylose 

contents, and lower onset gelatinization-temperatures than starch granules with a greater 

maturity. In the study of “Characterization and development mechanism of Apios americana 

tuber starch,” the starch of Apios americana tubers was characterized and the mechanism of 

the development of starch granules in the tuber was studied. The Apios is a wild legume-
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bearing plant with edible tuber and is currently under domestication as a potential food crop 

because of its superior nutritional values. The harvested Apios tuber can be planted in the 

following year as the mother (seed) tuber to further grow and produce child (progeny) tubers. 

The mother tubers were growing for two years, and the starch went through a further growth 

and was subjected to a longer annealing process. In general, the mother-tuber starch had 

larger granule-size, greater crystallinity, higher onset gelatinization-temperature, and greater 

enthalpy-change. Starch granules located in the periphery of the mother tuber displayed 

smaller granule-sizes, less amylose-contents, and lower gelatinization-temperatures than that 

located in the center of the mother tuber.
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CHAPTER 1 

LITERATURE REVIEW 

 

1. Structures of starch granule 

 Starch is the major energy-reserving polysaccharide produced by green plants and can 

be found in different organs of the plant, including seeds (e.g. corn and barley grain), stems 

(e.g. trunk of sago palm tree), leaves (e.g. tobacco leaf, duckweed), fruits (e.g. green banana), 

tubers (e.g. potato) and roots (e.g. cassava root). Native starch is present in the granular form 

and has semi-crystalline structures. Starch granules vary in shapes (spherical, oval, polygonal, 

disk, elongated, etc.), sizes (ranging from submicron to more than 100µm), and structures 

(e.g. amylose / amylopectin ratio, amylopectin branch-chain length, phospholipid and 

phosphate monoester), depending on the botanical origins of the starch (Alcazar-Alay & 

Meireles 2015; Buleon et al., 1998; Fredriksson et al., 1998; Hoover, 2001; Jane et al., 1994; 

Srichuwong et al., 2005; Tester et al., 2004), the organ of the plants (Fasahat et al. 2014; Yu 

et al. 2015), and the stage of development (Huang et al., 2006; Li et al., 2007; Zeng et al. 

2015). The composition and molecular structures of the starch determine starch properties. 

1.1 Structures of amylose and amylopectin 

 Starch consists of two major polysaccharides: amylose and amylopectin. Amylose is 

primarily a linear molecule comprised of D-glucopyranose units linked by α-1,4 glycosidic 

bonds and a few branches linked by α-1,6 glycosidic bonds (French 1972; Perez and Bertoft, 

2010; Taketa et al., 1987; Vamadevan and Bertoft 2015). Amylopectin has a highly branched 

structure consisting of short branch-chains of D-glucopyranose units, which are connected by 

α-1,6 glycosidic bonds ( ~5% of the total glycosidic bonds) (Banks and Greenwood, 1975; 

Hizukuri, 1986; Seetharaman and Bertoft 2013; Vamadevan and Bertoft 2015). Normal (wild 
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type) starches consist of 15-35% amylose, depending on the botanical origin and the stage of 

development (Hasjim et al. 2009; Jane et al. 1999; Li et al. 2007; Yoo et al. 2009; Zeng et al. 

2015). Waxy starches consist of almost exclusively amylopectin, whereas high-amylose 

starches consist of 40% or more amylose (Campbell et al. 2007; Li et al., 2008; Perez and 

Bertoft, 2010; Schirmer et al. 2013; Shi et al., 1998). 

1.1.1 Structures and properties of amylose 

 Although amylose molecules are generally considered to be linear, amylose isolated 

from various botanical sources cannot be completely hydrolyzed by β-amylase (an exo-

enzyme that hydrolyzes α-1,4 glycosidic linkages from the non-reducing end of 

polysaccharide chains). The β-amylolysis limit of amylose varies from 72 to 95% (Banks and 

Greenwood 1967; Hizukuri et al. 1981; Shao et al. 2007). With a concurrent action of β-

amylase and pullulanase (a debranching enzyme that hydrolyzes α-1,6 glycosidic linkages 

and releases the branch chains), however, amylose can be completely hydrolyzed, indicating 

the presence of α-1,6 linked branches in amylose molecule (Hizukuri et al. 1981; Takeda et al. 

1987). The branching frequency of amylose is about 3-11 branches per molecule, and each 

branch-chain consists of 200-700 glucopyranose units (Hanashiro et al. 2013; Hizukuri 1993; 

Hizukuri et al., 1981; Mua and Jackson 1997; Tester and Karkalas 2002). 

 Average molecular weights of amylose are in the order of 104-106 g/mol, or a degree 

of polymerization by number (DPn) of 300-9000, depending on the botanical origin of the 

starch (Chung and Liu 2009; Hizukuri et al., 1981; Hizukuri 1993; Jane 2004; Mua and 

Jackson 1997; Mukejea and Robyt 2010; Takeda et al. 1987; Wang et al. 2014). In general, 

amylose of cereal starch has smaller molecular-size than that of tuber and root starch (Jane 

2006; Mukerjea and Robyt 2010; Takeda et al. 1987). 

 Amylose has a strong tendency to complex with either a suitable complexing agent 

(e.g. 1-butanol or fatty acids) to form a single-helical inclusion complex (Ryno et al 2014; 



www.manaraa.com

7 

 

 

Takeo et al. 1973; Cao et al. 2015) or with another amylose or amylopectin branch-chain to 

form a double helix (Jiang et al. 2010a; Miles et al. 1984; Wen et al. 2014). Amylose single-

helical inclusion complex is usually left-handed, with the hydrophobic side of the amylose 

molecule facing the cavity of the helix, interacting with the non-polar moiety of the 

complexing agent (Lopez et al. 2012; Obiro et al. 2012; Takeo et al. 1973). The single-helix 

of amylose complex usually consists of six to eight glucosyl units per turn, depending on the 

cross-section diameter of the complexing agent (Jane and Robyt 1984; Nishiyama et al. 2010; 

Obiro et al. 2012; Putaux et al. 2011; Yamashita and Monobe 1971). Without the presence of 

a complexing agent, amylose molecules associate with one another and form double helices. 

A minimum chain length of DP 10 or DP 12 is required for the formation of double helices in 

a pure oligosaccharide solution, although shorter chains (e.g. DP 6) can co-crystallize with 

longer chains (Ciric et al. 2013; Gidley and Bulpin 1987; Wild and Blanshard 1986; Xu et al. 

2012). Amylose molecules with a chain length of DP 90-110 display the greatest 

retrogradation rate (Gidley 1989; Gidley and Bulpin 1989; Pfannemuller et al., 1971). 

1.1.2 Structures and properties of amylopectin 

 Amylopectin is a much larger molecule with a molecular weight in the order of 108–

109 g/mol (Buleon et al., 1998; Mendez-Montealvo et al. 2015; Oh and Shin 2015; Yoo and 

Jane, 2002). Amylopectin is a highly branched molecule, and the branch chains of 

amylopectin, except the extra-long branch chains, are much shorter than that of amylose. The 

individual branch-chains can be classified into “A”, “B”, or “C” chains in terms the position 

of the branch chain within the amylopectin molecule (Peat et al. 1952; Hizukuri 1986; 

Vamadevan and Bertoft 2015). Each amylopectin molecule consists of only one C chain that 

carries the sole reducing end of the molecule and the B and A chains. The A chains (usually 

with a chain length of DP 6-12) are those attached to B or C chains through α-1,6 linkages 

carrying no other chains. All A-chains are external chains (Vamadevan and Bertoft, 2015). 
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The B chains carry A or other B chains and are further grouped into B1 (DP 13-24), B2 (DP 

25-36), B3 (> DP 37) chains (Hanashiro et al. 1996). The average branch-chain lengths of 

normal starches are usually 18-31 DP, depending on the botanical origin of the starch (Bertoft 

et al., 2008; Hanashiro et al., 2002; Hizukuri, 1986; Mua and Jackson, 1997; Kallman et al. 

2015; Ketthaisong et al. 2015; Takeda, et al., 2003; Waterschoot et al. 2015). Classification 

of amylopectin branch-chains is shown in Figure 1. 

The actual architecture of amylopectin is still not fully understood, but the Cluster 

model, independently proposed by French (1972) and Nikuni (1978), is the most widely 

accepted model to describe the structure of amylopectin. It is proposed that branch-chains of 

amylopectin form double helices and the double helices are organized in parallel to form 

crystallites in clusters (Bertoft 2013; Chauhan and Seetharaman 2013; French 1972; Gallant 

et al. 1997; Nikuni 1978). The double helices are stabilized by hydrophobic interaction and 

hydrogen bonds, and the cluster structure is stabilized by hydrogen bonds and van de Waals 

forces between the adjacent double helices (Imberty et al. 1988; Seetharaman and Bertoft 

2013). As shown in Figure 1, adjacent amylopectin branch-chains (usually 9 to 17 double 

helical strands) are closely packed to form clusters (Gallant et al. 1997). For wheat, corn, 

barley, rice, potato, and tapioca starches, the amylopectin molecule consists of alternative 

crystalline and amorphous lamellae, with a constant repeating distance of 8.7-9.2 nm 

(Cardoso and Westfahl 2010; Jenkins et al. 1993; Witt et al. 2012), indicating that a complete 

cluster consists of 27-28 glucosyl units (Gernat et al. 1990). The chain-lengths of the A and 

B1 chains are usually < DP 24 and, thus, both the A and B1 chains extend within a single 

cluster. The B2 and B3 chains with longer branch-chain length extend through two and three 

clusters, respectively (Hizukuri 1986; Witt et al. 2012), and the clusters are connected by the 

B2 or B3 chains. 



www.manaraa.com

9 

 

 

 

Figure 1. Cluster model and classification of amylopectin. (Adapted from Hizukuri 1986).  

 

1.2 Organization of starch granule: 

 In a starch granule, amylopectin and amylose molecules are radially oriented from the 

hilum to the periphery, which is manifested by the Maltese cross of starch granules as viewed 

under a polarized-light microscope (Chen et al. 2015; Jane 2007; Munoz et al. 2015). 

Crosslinking studies using normal corn and potato starch showed that cross-linkages were 

only found between amylose and amylopectin molecules but not between amylose molecules 

(Jane et al., 1992; Kansemsuwan and Jane, 1994).  These results indicate that, in normal 

starch granules, amylose molecules are interspersed among amylopectin molecules and are 

not in close proximity to other amylose molecules, as shown in Figure 2. Surface-

gelatinization study using normal corn and potato starch indicated that amylose molecules 

were more concentrated at the periphery of starch granule (Jane and Shen 1993; Pan and Jane 

2000). The amylose molecules intertwine with amylopectin and contribute to maintaining the 

integrity of the granular structure (Jane et al. 1986; Pan and Jane 2000). 
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Figure 2. Schematic of the cross section of a starch granule. Amylopectin molecules are 

shown in red color and amylose molecules are shown in blue color. 

 

In high-amylose corn starch with a higher concentration of amylose molecules in the 

granule, amylose molecules can form double helices with one another and with the long 

chains of amylopectin and the intermediate components (Jiang et al. 2010a). The presence of 

the long-chain double helical crystallites of amylose and intermediate components was 

reflected by the high gelatinization conclusion-temperature measured using a DSC (up to 

130 °C), which was not affected after defatting of the starch (Jiang et al. 2010b). 

 The double helices of the branch chains of amylopectin are packed in two different 

polymorphs, A- and B-type. The unit cell of the A-type polymorph is monoclinic consisting 

of eight water molecules per unit cell, whereas that of the B-type polymorph is hexagonal 

consisting of thirty six water molecules per unit cell (Buleon et al. 1998; Popov et al., 2009; 

Wu and Sarko, 1978) (Figure 3). The packing of the double helices within the A-type 

polymorph is compact, whereas the B-type polymorph has a more open structure (Figure 3). 

The more compact packing of the A-type polymorph likely contributes to the higher 

gelatinization temperature and lower digestibility of A-type polymorphic spherulites than the 
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B-type spherulites (Cai and Shi 2013, 2014; Whittam et al., 1990). The branch-chain length 

of amylopectin has been found to be the key factor determining the polymorphic type of the 

starch. The B-type polymorphic starches, such as potato and amylomaize VII starches, 

consist of amylopectin with longer branch-chains than the A-type polymorphic starches, such 

as normal and waxy corn, wheat, tapioca, and taro starches (Hizukuri 1985; Jane 1994, 2004; 

Lin et al. 2016; Waterschoot et al. 2015). Some starches (e.g. pea or green banana starches) 

display a C-type polymorph, which is a mixture of A- and B-type polymorphs within a starch 

granule (Bogracheva et al. 1998; Buleon et al. 1998; Hung et al. 2013; Jiang et al. 2015). The 

distribution of the A- and B- polymorphic starch in the C-type polymorphic starch granules, 

however, are different among the botanical origins, likely depending on the granular shape 

and geographic location of the hilum in the granule. For the pea starch having an oval shape 

with the hilum located at the geographic center of the starch granule, the B-polymorphic 

starch is located essentially at the center of the granule, whereas A-polymorphic starch is 

located at the periphery of the granule (Bogracheva et al. 1998; Cai and Wei 2013). For the 

lotus rhizome starch having a rod shape with the hilum located at one end of the granule, the 

B-polymorphic starch is located close to the distal end from the hilum, whereas A-

polymorphic starch is essentially located close to the hilum end (Cai et al. 2014; Cai and Wei 

2013). 
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Figure 3. Crystalline packing of double helices of amylopectin in A-type and B-type 

polymorphs (Adapted from Buleon et al. 1998).  

 

2. Properties of Starch 

2.1 Thermal properties of starch 

The crystalline structure of starch granules is a result of hydrophobic interaction and 

hydrogen bonds to form double helices and lamellae. When these interactions are overcame, 

e.g. by heating starch in the presence of water, the starch transforms from a semi-crystalline 

structure to an amorphous state, which is accompanied with disruption of starch granules, 

loss of crystallinity and birefringence (disappearance of Maltese cross), and dissociation of 

double helices (Jane 2004; Schirmer et al. 2015). The process is known as starch 

gelatinization, which is an endothermic reaction and is irreversible. 

Starch gelatinization can be achieved by heating starch in the presence of a plasticizer 

(e.g. water or glycerol) or by non-heating approaches, such as mixing starch in alkaline 

solutions (Hu et al. 2016; Nadiha et al. 2015; Ragheb et al., 1995) or some neutral salt 

solutions (Huang et al. 2014; Jane 1993; Zhao et al. 2015). Hydroxide ions in the alkaline 
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solution can remove protons from the hydroxyl group and leave a negative charge on the 

glucose unit. The glucan chains bearing negative charges repel one another, resulting in 

dissociation of the double helices. Neutral salt solutions consist of cations with large charge-

densities (such as Li+ and Ca2+), which interact with the hydroxyl groups of starch and release 

heat to destabilize and dissociate double helices of starch (Jane 1993; Jane and Shen 1993; 

Pan and Jane 2000). For food and industrial applications, gelatinization of starches is 

normally achieved by heating starch in the presence of water. The thermal properties of 

starch, including the gelatinization temperature and enthalpy change, are commonly 

measured using a differential scanning calorimeter (DSC).  

Thermal properties of the native starch are determined by many factors, including 

structures of the starch (amylopectin structures and amylose content), minor components of 

starch (e.g. phosphate monoesters and lipids), and moisture content (or available water). In 

general, starch consisting of amylopectin with larger proportion of short branch-chains (DP 

6-12) displays a lower gelatinization-temperature and a smaller enthalpy-change because the 

short-chain double-helix is dissociated at a lower temperature (Brummell et al. 2015; Jane et 

al. 1997; Jane et al. 1999; Oh and Shin 2015; Srichuwong et al. 2005). Among the normal 

starches, contradictory results were reported with regard to the effect of amylose on 

gelatinization temperatures: the normal starches showed lower, higher, or similar 

gelatinization temperature compared with the waxy starches (Cai et al. 2015; Chen et al. 2015; 

Fredriksson et al. 1998; Sasaki et al. 2000; Vandeputte et al. 2003; Yu et al. 2015). In the 

high-amylose corn starch, the peak and conclusion gelatinization-temperatures increase with 

the increase in the amylose content, resulting from double-helical structures formed by the 

long chains of amylose/intermediate components (Li et al., 2008; Jiang et al., 2010a). The 

presence of negatively charged phosphate-monoester derivatives decreases starch 

gelatinization temperature resulting from the charge-repulsion (Cai and Shi 2010; Jane et al. 
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1999). For example, potato starch displays a lower onset, peak, and conclusion gelatinization-

temperature than corn and rice starches because of the presence of phosphate-monoester 

derivatives in the amylopectin of potato starch, although the amylopectin of potato starch has 

longer branch-chains than that of corn and rice starches (Alvani et al. 2011; Xu et al. 2013). 

In the presence of sugars or salts (e.g. NaCl or KCl), starch gelatinization-temperature and 

enthalpy change increase because sugars or salts bind with water and induce hydrogen-bond 

formation between water molecules, reducing free-water content (Ahmed 2012; Bogracheva 

et al. 1998; Li et al. 2015; Tomasik et al. 1995). In the presence of anions with a hydrophobic 

moiety and small charge-density (e.g. SCN  ̄ ), however, starch displays lower gelatinization-

temperature and smaller enthalpy-change because a structure-breaking effect of the anions 

increases free-water content and solution power. Starch chains can also form single helical-

complex with the anions to reduce the free energy of dissociated double-helices and reduce 

the gelatinization temperature and enthalpy change (Jane 1993). 

2.2 Pasting properties of starch 

When the gelatinized starch is continuously heated in excess water, starch pasting 

occurs, which is accompanied with a considerable increase in the swelling of starch granules, 

some dispersion, development of viscosity, and even complete disruption of the starch 

granule (Atwell et al. 1988). Starch pasting properties are usually measured using a Rapid 

Visco-Analyzer (RVA) or a Brabender Amylograph (Himeda et al. 2012; Jane et al. 1999; 

Okechukwu and Rao 1996; Suh and Jane 2003; Waterschoot et al. 2014). 

Swelling of starch granules is primarily contributed by amylopectin molecules, 

whereas amylose and amylose-lipid complex intertwine with amylopectin and restrict its 

swelling (Gerits et al. 2015; Jane 2006; Tester and Morrison 1992). Therefore, starches 

having greater contents of amylose and lipids (especially phospholipids) usually display 

higher pasting-temperatures and lower peak-viscosities (Collado et al. 1999; Jane et al. 1999; 
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Li et al. 2014; Yoo and Jane 2002; Wang et al. 2014). After the lipids are removed from 

starch, the starch displays a substantial increase in peak viscosity and decrease in pasting 

temperature compared with the native starch (Debet and Gidley 2006; Gerits et al. 2015; 

Yangcheng et al. 2016). Normal starch displays a higher setback-viscosity than the waxy 

starch, which is attributed to the entanglement between amylose and amylopectin upon 

cooling of the starch paste. In the presence of phosphate-monoester derivatives (e.g. potato 

starch), the repulsion force between the negatively-charged phosphate-monoesters facilitates 

swelling of the granule and results in substantially lower pasting temperature and higher peak 

viscosity of the starch. 

2.3 Gelling properties of starch 

 Gelling of the starch is the process by which the gelatinized and dispersed starch 

molecules re-associate, form a three-dimensional network, and fill up the space during the 

cooling of the starch paste. The network holds water molecules in the structure, which is a 

result of the interaction between the amylose and amylopectin molecules in the swollen 

granule. Starch gel has a defined shape with no fluidity, whereas starch paste has certain 

fluidity (Belitz et al. 2009). Amylopectin molecules can form gels at a much slower rate and 

at a substantially higher concentration than amylose molecules (Biliaderis and Izydorczyk 

1992), indicating that amylose facilitates the network and gel formation. Swollen starch 

granules maintaining higher integrity tend to form starch gels with a greater firmness. The 

native potato and tapioca starch does not form a gel or forms a weak gel, whereas lightly 

cross-linked or heat-moisture treated potato starch forms a stronger gel at the same 

concentration (Jyothi et al. 2010; Keetels et al. 1996; Klein et al. 2013; Zavareze et al. 2012). 

This is attributed to the increased integrity of swollen starch-granules after these treatments 

of the potato starch. The gelling properties of starch are also significantly affected by the 

formation of amylose-lipid complex in the starch. Native tapioca starch hardly forms a gel, 
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whereas wheat and corn starch at the same concentration form firm gels after cooking and 

storage, resulting from the presence of endogenous lipids in the wheat and corn starch (Debet 

and Gidley 2006). Tapioca starch, however, can form a gel when tapioca starch is cooked in 

the presence of lipids (e.g. corn oil or linoleic acid), which is likely resulted from the 

amylose-lipid complex formation in the tapioca starch with the added lipids (Ai et al. 2013). 

Amylose-lipid complex in the starch reduces swelling of starch granule and prevents the 

dispersion of the swollen granule (Srichuwong and Jane 2007), contributing to the gel 

formation of the starch. 

2.4. Retrogradation of starch 

Upon cooling and during storage, gelatinized starch molecules in the paste and gel 

tend to recrystallize by forming double helices. The process is known as starch retrogradation 

(Jane 2004). Amylose molecules in an aqueous medium retrograde fast and form crystallites 

with a high dissociation-temperature (130-170 °C) (Sievert and Pomeranz 1990; Jane et al. 

1999; Yu et al. 2014). Amylopectin molecules, however, retrograde in a much slower rate 

and form crystallites with a lower dissociation-temperature (40-60 °C) (Sievert and Pomeranz 

1990; Wang et al. 2015; Yu et al. 2014). 

Starch retrogradation is significantly affected by the structures and minor components 

of the starch. Generally, retrogradation rate positively correlates with the amylopectin 

branch-chain length (Chang and Lin 2007; Jane et al. 1999; Perera et al. 2001; Singh et al. 

2010; Yoo et al. 2009). The presence of amylose and/or amylose-lipid complex facilitates 

starch retrogradation, resulting from the restricted swelling of starch granule during cooking, 

which keeps the starch molecules in a close proximity and facilitates retrogradation (Jane et 

al. 1999). The presence of phosphate-monoesters in potato starch, however, retards starch 

retrogradation because of the repulsion force between the negatively-charged phosphate 

monoesters (Jane et al. 1999; Nwokocha et al. 2014; Thygesen et al. 2003). 
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3. Starch Biosynthesis 

 Starch molecules are cooperatively synthesized in the chloroplast or amyloplast by 

four classes of core enzymes, including ADP-glucose pyrophosphorylase, starch synthases, 

starch-branching enzymes, and starch-debranching enzymes (James et al. 2003; Jeon et al. 

2010; Smith 2001; Tetlow 2006, 2011).  

The substrate for starch biosynthesis is ADP-glucose, which is synthesized from 

glucose-1-phosphate and ATP in a reaction catalyzed by ADP-glucose pyrophosphorylase 

(AGPase) (Jeon et al. 2010; Martin and Smith 1995; Saripalli and Gupta 2015). The 

production of ADP-glucose by AGPase is considered as the rate-limiting step because it is the 

first committed step in the pathway of starch biosynthesis (Smith 2001). The catalytic activity 

of AGPase is positively regulated by 3-phosphoglycerate (3-PGA) and negatively regulated 

by inorganic orthophosphate (Pi) (James et al. 2003; Saripalli and Gupta 2015). Both up- and 

down-regulations of AGPase lead to proportional increase and decrease in the rates of starch 

biosynthesis. For example, the maize mutants of brittle 2 (bt2) and shrunken2 (sh2) display a 

70% reduction in starch content because they have less enzymatic activity of AGPase in their 

endosperm tissues. However, the revertant of sh2 mutant having increased AGPase activity or 

overexpression of AGPase displays an overproduction of starch in cereal endosperms 

(Buleon et al. 1998; Kang et al. 2013). 

The ADP-glucose is utilized by starch synthases (SSs) to elongate the linear chains of 

amylose and branch chains of amylopectin by transferring glucose units from ADP-glucose to 

the non-reducing end of a growing α-1,4-linked glucan (Jeon et al. 2010; Smith 2001). Cereal 

endosperms consist of at least five SS isoforms including granule-bound starch synthase I 

(GBSSI), SSI, SSII, SSIII, and SSIV. GBSSI is responsible for the biosynthesis of amylose 

and extra-long branch-chains of amylopectin (Hanashiro et al. 2008; James et al. 2003; Yoo 

and Jane 2002). Although the in vivo mechanism of synthesis of amylose and amylopectin by 
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GBSSI remains unclear, the in vitro studies have reported that GBSSI incorporates glucose 

both in amylopectin and amylose molecules depending on the conditions used in these 

experiments. In the absence or with a low concentration of malto-oligosaccharides, the 

product synthesized in vitro by GBSSI is confined to the amylopectin fraction. In the 

presence of a high concentration of malto-oligosaccharides, however, GBSSI massively 

incorporates glucose into amylose-like glucans (Denyer et al. 1996). A mechanism has been 

proposed that GBSSI synthesizes amylose by elongating the malto-oligosaccharide primers 

(Denyer et al. 2001). 

Other SS isoforms (SSI, II, III, IV) are exclusively involved in amylopectin 

biosynthesis. SSI is primarily responsible for the synthesis of the shortest chains with DP<10. 

With the increase in the length of the substrate linear-chains, SSI binding affinity increases 

but its catalytic activity decreases (Commuri and Kelling 2001; James et al. 2003). Two SSII 

enzymes have been identified: SSIIa and SSIIb. SSIIa predominates in cereal endosperms, 

whereas SSIIb predominates in photosynthetic tissues and the function of SSIIb in starch 

biosynthesis is unknown (Tetlow 2006, 2011). SSIIa is responsible for the biosynthesis of 

branch chains with a DP 12-24 by elongating short chains of DP<10. In mutants lacking 

SSIIa activities (e.g. sugary 2 corn), the starch displays a decrease in the amylopectin content 

(Jobling 2004) and an increase in the proportion of short branch-chains with DP<12 (Perera 

et al. 2001). SSIII is responsible for the elongation of longer branch-chains with DP>25 

(Jame et al. 2003), whereas the function of SSIV in starch biosynthesis remains unclear 

(Tetlow 2006). 

The branch chains are introduced by starch branching enzymes (SBE), which cleaves 

α-1,4 linkages and transfers the released glucan residues to C6 hydroxyl groups (Jame et al. 

2003; Nakamura et al. 2010; Smith 2001). In corn, there are two SBE isoforms, SBEI and 

SBEII, and SBEII is further classified to SBEIIa and SBEIIb. SBEIIa is the dominant 
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branching enzyme in the endosperms of wheat and barley, whereas SBEIIb is dominant in the 

endosperms of rice and corn (Regina et al. 2010). All the SBE isomers differ in terms of 

affinities to different substrates and capabilities of transferring glucan-chains. Typically, 

SBEI preferentially branches amylose-like linear glucans, whereas SBEII has a higher 

capacity for branching highly branched glucans (e.g. amylopectin) (Nakamura et al. 2010; 

Tetlow and Emes 2014). 

The debranching enzymes (DE) are responsible for the trimming of the amylopectin 

structure. The DE selectively removes branches inappropriately positioned and is required for 

the maintenance of the cluster structure of the amylopectin (James et al. 2003; Tetlow 2011). 

Deficiency of DE, for example, in sugary-1 (su-1) mutants of corn, rice, and barley, leads to 

an accumulation of over-branched, water-soluble phytoglycogen at the expense of 

amylopectin (Hamada et al. 2014; Szymanek et al. 2015). Although the precise functions of 

DE are still not clear, it is for certain that the final structure of amylopectin is determined by a 

balance between the activities of debranching and branching enzymes (Martin and Smith 

1995). 

 

4. Waxy corn 

 The waxy mutants of corn, barley, wheat, and sorghum have been known for many 

years, but only waxy corn is grown on a commercial scale (Jobling 2004). Waxy corn starch 

is essentially free of amylose, and, therefore, the physicochemical properties of waxy corn 

starch are quite different from normal corn starch. In general, waxy corn starch displays 

greater gelatinization enthalpy-change, slower retrogradation rate, lower pasting temperature, 

higher peak viscosity, and lower set-back viscosity than normal corn starch (Ai and Jane 

2015; Kibar et al. 2011; Wang et al. 1992; Jane et al. 1999; Yu et al. 2015). Waxy corn 

starch-paste displays a high viscosity, stringy texture, little cloudiness, and a low tendency to 
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gel, which is similar to tapioca starch-paste (BeMiller 2009). Because of the unique pasting 

properties of waxy corn starch, it is preferred in many food and non-food applications over 

normal corn starch. In food applications, waxy corn starch is used to improve the uniformity, 

viscosity, freeze-thaw stability, and appearance of the food products (Fergason 1994). In non-

food applications, because of the higher hydrolysis rate of waxy corn starch, waxy corn 

displays higher feed conversion-efficiency when used as a livestock feed (Collins et al. 2003) 

and higher starch-ethanol conversion-efficiency when used for ethanol production 

(Yangcheng et al. 2013). Waxy corn starch is preferred in producing adhesives and textiles 

because of its clear film-forming properties (Fergason 1994; Wang et al. 2012). 

 Paste of native/unmodified waxy corn starch, however, is too stringy and cohesive 

and easy to break down under shear, which is not desirable for many food applications. 

Therefore, modification of the waxy corn starch (e.g. cross-linking) is usually necessary to 

improve the quality and endurability of waxy corn starch during processing (BeMiller 2009). 

Recent studies on partial-waxy wheat and durum wheat starches, however, may provide a 

new approach to improve the processing properties of waxy corn starch. Partial-waxy wheat 

and durum wheat starches, having a reduced amylose-content, improve the texture and 

quality of pasta and Japanese white salted noodle, whereas the full waxy starches give a poor 

quality (Ishada et al. 2003; Sharma et al. 2002). It is possible that amylose in the partial-waxy 

starches, although at a reduced concentration, improve the integrity of the swollen starch-

granule without causing much decrease in the paste viscosity. It is of great interest to 

understand the functionalities of partial-waxy corn starch, which may provide a new 

approach to improve the endurability and processing quality of waxy corn starch without 

applying chemical modifications. 
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5. Effects of Growing Conditions on Starch Physicochemical Properties 

In the cereal endosperm, the maximum rate of starch accumulation occurs between 12 

and 35 days after pollination (DAP), which is knowns as grain-filling period (Thitisaksakul et 

al. 2012). Transcription of different isoforms of AGPase, SSs, SBEs, and SDEs are present at 

distinct times during the grain-filling stage (Ohdan et al. 2011; Stamova et al. 2009; Toyota et 

al. 2006), and changes in even one enzyme isoform could profoundly affect the starch 

structures and properties (Keeling and Myers 2010).  

Starch biosynthetic enzymes are sensitive to temperature changes, and the enzyme 

activity decreases drastically under heat stress. The optimal temperature for SSs in wheat is 

around 20-25 °C (Keeling et al. 1993), the enzyme activity drastically decreases when the 

temperature is above 35°C. GBSSI is also affected by heat, although not to the same extent as 

the SSs, and the susceptibility of GBSSI to high temperature is the dependent on a single 

nucleotide polymorphism (SNP) in its DNA sequence. For example, the GBSSI of Indica rice 

is more susceptible to heat stress than Japonica rice, resulting from the difference in a single 

nucleotide of its DNA sequence between the Indica and Japonica rice (Inukai and Hirayama 

2010; Yamakawa et al. 2007). The optimal temperature for SBEIIb in rice and corn is around 

25°C and 15-20 °C, respectively, and decreased activities of SBEs under heat stress may 

contribute to the changes in the branch-chain length of starch (Ohdan et al. 2011). 

5.1 Effects of Growing Temperature on Starch Structures and Properties 

 The effect of growing temperature on starch physicochemical properties has been 

intensively studied in many plant species. In barley and wheat, the elevated temperature is 

associated with reduced starch accumulation in the grain, smaller granule-size, larger 

proportion of small B-granules, increased lipid contents in the starch, similar or slightly 

increased amylose contents (Lu et al. 2014; Matsuki et al. 2003; Shi et al. 1994; Tester et al. 

1991). The percentage of short branch-chains (DP < 12) of amylopectin decreases and that of 
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long branch-chains (DP > 35) increases with the increase in the growing temperature of 

wheat (Matsuki et al. 2003). The yield and physicochemical properties of sorghum starch 

display similar changes to wheat at high growing temperatures (Li et al. 2013). 

 Corn and rice starches, however, display decreased amylose content at high growing 

temperatures (Asaoka et al. 1985; Lu et al. 1996). The rice starch developed at high 

temperatures displays increased proportion of long and intermediate B-chains and decreased 

proportion of short branch-chains (Asaoka et al. 1985; Cao et al. 2015; Inouchi et al. 2000). 

Lu et al. (1996) reported that the changes in the branch-chain length distribution of normal 

dent corn starch in response to the growing temperature were variety-dependent: one variety 

displayed increased proportion of intermediate branch-chains and decreased proportions of 

short and long branch-chains, whereas the other variety displayed increased proportion of 

intermediate and long branch-chains and decreased proportions of short branch-chains. The 

waxy corn starch developed at high growing-temperatures displays an increased iodine-

binding capacity, indicating that the waxy corn starch has longer branch-chains in response to 

the high growing temperature (Lu et al. 2014; Yang et al. 2015). These studies indicate that 

the activity of starch-biosynthetic enzymes and starch structures and properties are affected in 

different ways in response to the elevated growing temperature, which is dependent on the 

botanical origins and genetic backgrounds of the plant (Thitisaksakul et al. 2012). 

5.2 Annealing of starch during the crop development 

 Annealing of starch is defined as a physical treatment that involves incubation of 

starch granules in excess water (usually above 60%) for a certain period of time at a 

temperature above the glass transition temperature but below the onset-gelatinization 

temperature (Jacobs and Delcour 1998; Tester and Debon 2000; Jayakody and Hoover 2008). 

It is possible that commercial corn, wheat, and barley starches are annealed during the 

isolation process because the grains are steeped at ~50 °C for 48-72 hr prior to milling. 
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 It has been widely accepted that annealing of starch improves alignment and structure 

of double helices within the crystalline lattice and perfection of the existing crystallites 

without increasing the number of double helices in normal or waxy starches (Gomand et al. 

2012; Tester and Debon 2000). Nevertheless, it is likely that new double helices form within 

the high-amylose potato starch after annealing (Gomand et al. 2012; Tester and Debon 2000). 

Thermal and pasting properties of the starch significantly change after annealing. It has been 

reported that, despite of starch sources, annealed starches display a higher onset-

gelatinization temperature and a reduced gelatinization temperature-range (Jacobs and 

Delcour 1998; Jayakody and Hoover 2008; Zavareze and Dias 2011; Gomand et al. 2012). 

The gelatinization enthalpy-change either remains unchanged (Vermeylen et al. 2006; Wang 

et al. 1997) or slightly increases after annealing (Hoover and Vasanthan 1994; Jayakody and 

Hoover 2008; Vamadevan et al. 2013). The annealed starches also display decreased swelling 

power, increased pasting temperature, and decreased peak viscosity compared with the un-

annealed starches (Jacobs and Delcour 1998; Jayakody and Hoover 2008; Song et al. 2014; 

Tester and Debon 2000). 

 During the development of starch granules of the crop, there is an environmentally 

driven in vivo annealing of starch granules, especially when the starch granules develop at a 

high growing temperature. Debon et al. (1998) investigated the starch physicochemical 

properties of potato tubers grown at 10, 16, and 24 °C. The authors reported increased onset-

gelatinization temperature and decreased gelatinization-temperature range with increase in 

the growing temperature, although the amylopectin branch-chain length distribution was not 

affected by the growing temperature. Similar results were reported on waxy, normal, and 

high-amylose barley cultivars grown at a temperature ranging 7-20 °C (Kiseleva et al. 2004). 

The authors reported increased onset-gelatinization temperature and decreased gelatinization-

temperature range with increase in the growing temperature for all the barley cultivars and 
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the change in gelatinization enthalpy-change did not show a clear trend. These findings 

indicate that, apart from the direct impact of growing temperature on the activities of starch 

biosynthetic enzymes, a high growing temperature facilitates in vivo annealing of starch 

during the development of starch granules and results in different properties of the starch. 
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ABSTRACT 

 Objectives of this study were to 1) determine the starch physicochemical properties of 

two commercial Tibetan hull-less barley varieties, Beiqing (BQ) and Kangqing (KQ); and 2) 

understand the relationship between unique properties of the starches, their structures, and 

impacts of growing conditions. The BQ barleys were grown at a location with lower 

temperature and less rainfall compared with the KQ barleys. The BQ starches showed 

significantly lower onset-gelatinization temperature (54.1-54.9 °C), larger gelatinization-

temperature range (9.4-10.6 °C), and higher peak-viscosities (138.9-153.9 RVU) than the KQ 

starches (55.1-56.1°C, 7.4-8.8 °C, and 63.4-64.7 RVU, respectively). After a treatment with 2% 

sodium-dodecyl-sulphate solution, the KQ starches showed substantially greater increases in 

peak viscosities than the BQ starches. Annealing of starch and enhanced amylose-lipid 

complex formation, resulting from higher growing temperature during the development of the 

KQ starches, likely contributed to the differences in thermal and pasting properties between 

the BQ and KQ starches. 

 

Keywords: Tibetan hull-less barley; Thermal properties; Pasting properties; Annealing effects 
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1. Introduction 

 Barley is the fourth largest cereal crop produced worldwide, following maize, rice, 

and wheat (FAOSTAT, 2012). Barley grain is mainly used for the production of alcoholic 

beverage and livestock feed (Li, Vasanthan, Rossnagel, & Hoover, 2001a). Hull-less barley, 

also known as naked barley, is different from hulled barley because kernels of hull-less 

barley can easily detach from the hull during threshing. This is attributed to a recessive gene, 

nud, expressed in hull-less barley varieties, which inhibits the development of husks and 

caryopsis (Franckowiack & Konishi, 1997). Compared with hulled barley, hull-less barley 

needs less space for storage and transportation and can avoid the loss of vitamins and 

minerals resulting from the peeling operation (Liu et al., 1996). 

Hull-less barley usually has greater starch, protein, and β-glucan contents than the 

hulled barley because hull-less barley does not have the fibrous hull (Bhatty, 1999). 

Applications of hull-less barley have been studied, including for swine and poultry feeds 

(Darroch, Aherne, Helm, Sauer, & Jaikaran, 1996; Liu et al., 1996), production of bran and 

flour for food ingredients (Bhatty, 1995a), extraction of β-glucan for food applications 

(Bhatty, 1995b), and production of fuel ethanol (Ingledew, Jones, Bhatty, & Rossnagel, 1995; 

Tomas, Dhas, Rossnagel, & Ingledew, 1995). Different genotypes of hull-less barley, 

including normal (25-30% amylose), waxy (1-5% amylose), zero-amylose (0%), and high-

amylose (35-45%) varieties, have been developed through traditional breeding practices 

(Bhatty & Rossnagel, 1997; Li et al., 2001a). Starches isolated from these hull-less barley 

varieties showed diverse physicochemical properties, such as pasting temperature and pasting 

viscosity, paste clarity, and freeze-thaw stability (Li, Vasanthan, Rossnagel, & Hoover, 

2001b; Song & Jane, 2000; Zheng, Han, & Bhatty, 1998), which extends the potential of 

using hull-less barley starch for various food and industrial applications. 
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As a traditional staple food for Tibetan people, hull-less barley is a major food crop 

grown on the Tibetan Plateau, representing 64% of the total crop production in Tibet (Zou et 

al., 2008). The recent growing interest in Tibetan hull-less barley (THLB) has been sparked 

by its high nutritional values and health benefits. The low incidence of hyperlipidemia and 

diabetes in Tibetan population has been associated with the consumption of hull-less barley 

(Gou, Li, & Guo, 2005). Studies have shown that, among 164 barley cultivars collected from 

China, Canada and Australia, THLB has the largest β-glucan content, up to 8.62% (average 

5.25%) (Zhang, Wang, & Chen, 2002). The bran of THLB is a good source of linoleic acid 

and palmitic acid (Qian, Jiang, Su, & Gao, 2009). THLB is also a rich source of soluble 

phenolic compound, which displays an excellent radical-scavenging capacity in plasma 

(Gong, Cheng, Wu, Wu, & Zhang, 2012). The THLB extracts inhibit lipid oxidation in rat 

tissues (Li, Yan, & Zhong, 2005) and increase the survival time of rats under hypoxia 

conditions (Zhang et al., 2007). 

Beiqing (BQ) and Kangqing (KQ) hull-less barley are the most important commercial 

varieties grown in Tibet area (Feng, Yang, Liu, Gou, &Tang, 2005; Ma 2011). The 

production yields of BQ (1518-1822 kg/acre) and KQ varieties (1570-1744 kg/acre) are 10-

20% higher than other commercial varieties (Feng et al., 2005; Ma 2011). The two THLB 

varieties, however, have quite different eating quality. Starch is the major component of hull-

less barley grain (59-64%) (Li et al., 2001a), which affects the eating quality of the grain. In 

contrast to abundant literature on health-promoting values of THLB, there is a scarcity of 

information on its starch physicochemical properties and the impacts on the eating quality 

and value-added applications (Li et al., 2014).  

 Objectives of this study were to 1) determine the starch physicochemical properties of 

two commercial THLB varieties, Beiqing (BQ) and Kangqing (KQ); and 2) understand the 

relationship between unique properties of the starches, their structures, and impacts of 
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growing conditions. Results obtained from this study will unveil the mechanism of the 

variations in starch properties of THLB and are important for development of value-added 

utilization of the THLB starch. 

 

2. Materials and methods 

2.1 Materials 

 Six Tibetan spring hull-less barley varieties (Hordeum vulgare L. var. nudum hook. f.) 

were used in this study. Three of the six barley varieties, Beiqing 4 (BQ4), Beiqing 6 (BQ6), 

and Beiqing 7 (BQ7), were grown in Tibetan autonomous prefecture of Haibei, Qinghai 

province (N36°58’, E100°52’, ~3,110 m altitude). The other three varieties, Kangqing 3 

(KQ3), Kangqing 6 (KQ6), and Kangqing 7 (KQ7), were grown in Tibetan autonomous 

prefecture of Ganze, Sichuan province (N30°04’, E101°95’, ~3,500 m altitude). The growing 

season of the six THLB varieties was from May to September. The average temperature and 

accumulated rainfall of the growing season in the Beiqing location were 7.4 °C and 27.0 cm, 

respectively, whereas that in the Kangqing location were 13.3 °C and 58.9 cm, respectively 

(Public Weather Service Center of CMA, 2014). THLB kernels were coarsely crushed before 

shipping to Iowa State University. 

 Pseudomonas isoamylase (EC 3.2.1.68, 280 U/mg) was purchased from Megazyme 

International Ireland (Wicklow, Ireland). Porcine pancreatic α-amylase (EC 3.2.1.1, 21.6 

U/mg) and A. niger amyloglucosidase (EC 3.2.1.3, ≥300 U/ml) were from Sigma-Aldrich Co. 

(St. Louis, MO). All other chemicals were reagent grade and were purchased from either 

Sigma-Aldrich Co. (St. Louis, MO) or Fisher Scientific (Pittsburgh, PA) and used without 

further purification. 
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2.2 Starch Isolation by Wet-milling 

 Starches were isolated from the coarsely-crushed THLB kernels using a wet-milling 

method reported by Li, Jiang, Campbell, Blanco, & Jane (2008). 

2.3 Scanning Electron Microscopy 

 Scanning electron micrographs of isolated starch granules were taken using a 

scanning electron microscope (JEOL JSM-35, Tokyo, Japan) following the methods 

previously reported (Song & Jane, 2000). The average starch granule size was determined by 

measuring 200 granules using an Infinity Analyze software (version 6.1.0, Lumenera Corp., 

Canada). 

2.4 X-ray Diffraction Pattern 

 X-ray diffraction patterns of starch samples were obtained using a diffractometer 

(Siemens D-500, Madison, WI) following the methods previously reported (Song & Jane, 

2000). The copper tube was operated at 30 mA and 45 kV, and the scanning region of the 

two-theta angle (2θ) was from 4 to 40 degree. The crystallinity of the starch was calculated 

using a MDI JADE software (version 6.5, Materials Data Inc., Livermore, California, USA) 

2.5 Amylose Content of Starch 

 The amylose content of the THLB starch was determined using an iodine 

potentiometric- autotitrator (702 SM Titrino, Brinkmann Instrument, Westbury, NY) (Song & 

Jane, 2000). Starch was defatted using 85% methanol in a Soxhlet extractor for 16 h prior to 

the analysis. The iodine affinity of amylose used for the calculation was 0.2 (Takeda & 

Hizukuri, 1987). The amylose content was calculated using the equation: Amylose (%) = 

100% IAs / 0.2, where IAs was the iodine affinity of the starch. 

2.6 Lipid Content of Starch 

 Lipid contents of the starches were determined using a Gas Chromatography-Flame 

Ionization Detection system (HP 5890 Series II, Hewlett-Packard, Palo Alto, CA), equipped 
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with a Supelco SP-2340 capillary column (Sigma-Aldrich Co., St. Louis, MO). The fatty acid 

methyl ester (FAME) was prepared directly using the native starch without prior lipid 

extraction. Starch (500 mg, dsb) was suspended in 4 ml of methanol : chloroform (1:1) 

containing 3% (v/v) sulfuric acid. Margaric acid (C17:0, 1 mg) was added as the internal 

reference. The mixture was incubated at 80 °C overnight to completely convert the lipids to 

FAME. The mixture was washed twice with deionized water, and the chloroform layer 

containing the FAME was collected. The chloroform was evaporated under nitrogen gas-flow, 

and the obtained FAME was re-dissolved in 0.5 ml of analytical-grade hexanes for gas-

chromatography analysis. The oven temperature was programmed with an initial hold of 1 

min at 100 °C, heating from 100 to 240 °C at 4 °C/min, and a final hold of 5 min (the total 

analysis time was 41 min). The lipid content was calculated following the equation: 

Lipid (%) = ((100% - Peak C17:0%) / Peak C17:0% × 1 mg) / 500 mg) × 100% 

2.7 Phosphorus Analysis and Characterization 

 Total phosphorus contents of the THLB starches were determined using a 

colorimetric method after an ashing process (Singh & Ali, 1987). The chemical structure of 

phosphorus of the starch was characterized using a 31P-NMR spectrometer (Bruker 

Instruments, Billerica, MA) following the method reported by Kasemsuwan & Jane (1996). 

2.8 Amylopectin Branch-chain Length Distribution 

Amylopectin of the THLB starch was separated from amylose and collected using a 

gel-permeation chromatographic column packed with Sepharose CL-2B gel. The isolated 

amylopectin was debranched using Pseudomonas isoamylase (Megazyme International 

Irelands, Wicklow, Ireland). The branch chains of the debranched amylopectin were labeled 

with 8-amino-1,3,6-pyrenetrisulfonic acid (0.2M in 15% acetic acid), and the branch-chain 

length distribution was analyzed using a fluorophore-assisted capillary electrophoresis 
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(Beckman Coulter, Fullerton, CA) following the methods previously reported (Jiang, 

Campbell, Blanco, & Jane, 2010; Morell, Samuel, & O’Shea, 1998). 

2.9 Starch Thermal Properties 

Thermal properties of the isolated starch were analyzed using a differential scanning 

calorimeter (DSC, Diamond, Perkin-Elmer, Norwalk, CT). Starch gelatinization onset (To), 

peak (Tp), and conclusion temperatures (Tc), and enthalpy change (∆H) were obtained using a 

Pyris software (Perkin-Elmer). The gelatinized starch samples were stored at 4 °C for 7 days 

and then analyzed using the same parameters for their percentages retrogradation. The 

percentage retrogradation was calculated using the equation: Retrogradation (%) = 100% ΔH 

of dissociation of retrograded starch / ΔH of starch gelatinization. 

2.10 Starch Pasting Properties 

 Pasting properties of both the native THLB starch and the starch treated with a 

sodium-dodecyl-sulphate (sds) solution were analyzed. Isolated starches were treated with a 

sds solution (2%, w/v) at room temperature for 30min following the method previously 

reported (Debet & Gidley, 2006; Nierle, Baya, Kersting, & Meyer, 1990). 

Starch pasting properties were analyzed using a Rapid Visco-Analyzer (Newport 

Scientific, Sydney, Australia) following the method of Jane et al. (1999). The pasting 

temperature, and the peak, breakdown, and final viscosities were determined using the 

Thermocline software (Newport Scientific). 

2.11 Starch Digestibility 

 Starch digestibility was analyzed following the Englyst’s method (Englyst, Kingman, 

& Cummings, 1992) with modifications (Li, et al. 2008). Starch was suspended (5%, w/v) in 

a sodium-acetate buffer solution (0.1 M, pH 5.2) and heated in a boiling-water bath for 20 

min with stirring. After cooling and equilibrating at 37 °C in a shaker water bath, the starch 

sample was hydrolyzed in vitro using porcine pancreatin extract and A. niger 
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amyloglucosidase (Sigma-Aldrich Co., St. Louis, MO) with continuous agitation. Starch that 

was hydrolyzed within 20 min incubation-time was defined as rapidly-digestible starch. 

Starch that was hydrolyzed between 20 and 120 min was defined as slowly-digestible starch, 

and the portion that was not hydrolyzed at the end of 120 min was defined as resistant starch. 

2.12 Syneresis of Starch Gels after Freeze-Thaw Cycles 

 Starch paste (5%, w/w, dsb) was prepared following the same procedures for starch 

pasting properties. The resulting starch paste (1±0.1 g) was quantitatively transferred to a pre-

weighed microcentrifuge tube, and allowed to cool down at room temperature for 4 h. Starch 

gels in the tubes were stored at -18 °C for 20 h followed by thawing at 30 °C for 4 h. The 

process was repeated up to five cycles. After the 1st, 3rd, and 5th freeze-thaw cycles, the tubes 

were centrifuged at 6,600 g for 10 min to remove the water released from the gel. Percentage 

syneresis was calculated as the weight percentage of the water released on the basis of the 

initial gel weight. 

2.13 Statistical Analysis 

 Data were subjected to analysis of variance and Tukey’s multiple comparison analysis 

using PROC ANOA procedure of SAS 9.2 (SAS Institute, Inc., Cary, NC). 

 

3. RESULTS 

3.1 Starch Granule Morphology and Crystalline Structure 

 THLB starch granules isolated from the BQ and KQ barley displayed typical bimodal 

size-distributions (Figure 1). Large granules (A granules) had a lenticular shape and granule 

diameters of 10-30 μm, and small granules (B granules) had a spherical shape and granule 

diameters of 1-5 μm. These results were in line with those reported in previous studies on 

hulled and hull-less barley starches (Jane, Kasemsuwan, Leas, Zobel, &Robyt, 1994; Li et al., 

2001a; Song & Jane, 2000; Vasanthan & Bhatty, 1996). Average diameters of the BQ starch 
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A- and B- granules were 12.0-13.1 μm and 2.0-2.1 μm, respectively, which were smaller than 

that of the KQ starch granules, 13.3-14.0 μm and 2.2-2.3 μm, respectively (Table 1). 

 X-ray diffraction studies of the THLB starch showed a typical A-type diffraction 

pattern with strong peaks at 2θ of 15.1°, 16.8°, 17.8°, and 23.0° (Figure 2). The BQ starches 

showed slightly lower percentage crystallinity (20.8-21.3%) than the KQ starches (21.3-

21.9%).  

3.2 Amylose, Lipid, and Phosphorus Contents of Starch 

 Results of the amylose contents showed that the BQ starches had less amylose 

contents (24.0-25.0%) than the KQ starches (26.2-26.9%). Correlation analysis showed that 

amylose contents of the starches positively correlated with the granule diameters of the A 

granules for both the BQ and KQ starches (R2=0.99, p<0.01 for the BQ starches and R2=0.90, 

p<0.05 for the KQ starches, respectively). These results agreed with previous reports that the 

amylose content increases with the increase in starch granule-size (Duffus & Murdoch, 1979; 

Li, Blanco, & Jane, 2007). Lipid contents of the BQ starches ranged 0.41-0.45% (w/w), 

which were similar to that of the KQ starches (0.42-0.45%, w/w) (Table 1).  

Starch phosphorus-contents of the six varieties ranged 0.045-0.050% (w/w) (Table 1). 

31P-NMR spectra of all the THLB starches showed signals at the chemical shift between -1 

and 0 ppm (Data not shown), corresponding to phospholipids, and no signals appeared 

between 4 and 6 ppm, corresponding to phosphate monoester derivatives (Kasemsuwan & 

Jane, 1996; Lim, Kasemsuwan, & Jane, 1994). The results showed that the phosphorus in 

THLB starches was present exclusively in the form of phospholipids. 

3.3 Amylopectin Branch-Chain Length Distribution 

 Amylopectin branch-chain length distributions of the THLB starches are shown in 

Table 2. Average branch-chain lengths of the BQ amylopectin molecules (DP 20.5 – 20.7) 
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were similar to that of the KQ amylopectin (DP 20.2 – 20.6). The results were in line with the 

previous findings (DP 17.6-22.6) (Vasanthan & Hoover, 2009).  

3.4 Starch Thermal Properties 

 Thermal properties of the THLB starches are shown in Table 3. The BQ starches 

showed significantly lower (p<0.05) onset-gelatinization temperatures (To) (54.1-54.9 °C) 

than the KQ starches (55.1-56.1 °C). Gelatinization-temperature ranges (Tc-To) of the BQ 

starches (9.4-10.6 °C) were significantly (p<0.05) larger than that of the KQ starches (7.4-

8.8 °C). Percentages retrogradation of the gelatinized KQ starches after storage at 4 °C for 

seven days (24.6-27.8%) were greater than that of the BQ starches (21.1-25.0%).  

3.5 Starch Pasting Properties 

 Starch pasting properties are shown in Figure 3. Remarkable differences in starch 

pasting properties were observed between the BQ and KQ barley. The BQ starches showed 

significantly greater peak viscosities (138.9-153.9 RVU) but lower pasting temperatures 

(90.6-91.3 °C) than the KQ starches (63.4-64.7 RVU and 92.5-93.2 °C, respectively) (Figure 

3 (A)). The peak viscosities of the BQ starches were more than double of that of the KQ 

starches. 

 To investigate the effect of amylose-lipid complex on starch pasting properties, we 

analyzed the pasting properties of the THLB starches after being treated with a sds solution 

(2%, w/v). It is known that sds, as a surfactant, removes lipids from the starch, and sds-

treatment is unlikely to cause damage to the starch granules (Debet & Gidley, 2006; Nierle et 

al., 1990). The sds-treated THLB starches showed significant reductions in the pasting 

temperature (70.3-72.5 °C) compared with that of the native starch (90.6-93.2 °C) (Figure 3). 

The peak viscosities of the sds-treated BQ starches (232.7-238.4 RVU) increased to ~1.6 

times of that of the native BQ starches (138.9-153.9 RVU), whereas that of the sds-treated 

KQ starches (191.6-214.8 RVU) increased to more than 3 times of that of the native KQ 
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starches (63.4-64.7 RVU) (Figure 3). The KQ starches showed substantially greater increases 

in peak viscosities than the BQ starches after the sds treatment. Consequently, the differences 

in peak viscosities between the BQ and KQ starches were substantially reduced (from >2.1 

times to <1.2 times) after the sds treatment. 

3.6 Starch Digestibility 

 Digestibility of the THLB starch after cooking is shown in Table 4. The BQ starches 

contained more RDS (76.8-78.6%) but less SDS (11.7-14.2%) and RS (8.6-9.8%) than the 

KQ starches (74.6-75.6%, 14.1-16.0%, and 9.4-10.3%, respectively).  

3.7 Freeze-Thaw Stability of Starch Gel 

 Freeze-thaw stability of the starch gel, determined after the 1st, 3rd, and 5th freeze-thaw 

cycles (FTC), is shown in Table 5. In general, the syneresis increased with increasing 

numbers of FTC. After the 1st FTC, corn, BQ4, and BQ7 starch gels showed good stability 

(<15% syneresis), whereas KQ starch gels had a syneresis ranging 46.3-49.8%. After the 3rd 

and 5th FTC, however, corn, BQ4, and BQ7 starch gels lost stability and reached ~50% of 

syneresis. The KQ starch gel showed larger syneresis than the BQ starch gel (Table 5), and 

the results were consistent with the greater retrogradation rate of the KQ starches (Table 3), 

both resulting from the restricted swelling of the starch granules. 

 

4. DISCUSSION 

 The physicochemical properties of the starch isolated from two commercial THLB 

varieties, BQ and KQ, were compared in this study. The results showed significant 

differences in starch physicochemical properties between the BQ and KQ varieties, especially 

in starch thermal and pasting properties. 

The BQ starches showed significantly lower onset-gelatinization temperature and 

larger gelatinization temperature-range than the KQ starches. The branch-chain lengths of 
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amylopectin, however, were similar between the BQ and KQ starches, which unlikely 

contributed to the differences in the starch thermal properties between the BQ and KQ 

varieties. It is known that gelatinization temperatures can also be affected by the growing 

conditions, including temperature and moisture during the development of starch granules 

(Lu, Jane, Kelling, &Singletary, 1996; Tester, 1997), which resembles the annealing process 

of starch in vitro. The average temperature and accumulated rainfall during the growing 

season of the KQ varieties (13.3°C and 58.9 cm, respectively) were substantially higher than 

that of the BQ varieties (7.4°C and 27.0 cm, respectively). The higher growing temperature 

and abundant moisture during the development of starch granules could cause annealing of 

starch and resulted in the higher onset-gelatinization temperatures and narrower gelatinization 

temperature-ranges of the KQ starches (Tester, Debon, & Sommerville, 2000). 

The BQ starches showed significantly higher peak viscosities but lower pasting 

temperatures than the KQ starches. It is known that amylopectin is primarily responsible for 

granule swelling and viscosity (Tester & Morrison, 1990) and starch pasting properties are 

affected by amylose and lipid contents (Jane et al., 1999; Morrison, Tester, Snape, Law, & 

Gidley, 1993; Srichuwong, Sunarti, Mishima, Isono, & Hisamatsu, 2005). The insignificant 

difference in amylopectin branch-chain length and lipid contents and small differences in the 

amylose contents between the BQ and KQ starches were unlikely a convincing explanation of 

the significant differences in starch pasting properties. It has also been reported that starch 

granule swelling is significantly affected by the growing temperature of the plant during 

starch development (Tester, 1997). Elevated growing temperatures enhanced the 

development of double-helical crystalline structure as shown in Figure 2, which reduced the 

rate of starch hydration and restricted granule swelling (Tester, 1997; Tester et al., 2000). 

After removing lipids by sds-treatment, the KQ starches showed substantially greater 

increases in peak viscosities than the BQ starches. These results indicated that starch-lipid 
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interactions in the KQ starches could be enhanced by the high growing temperature and 

moisture during the development of starch granules, which in turn further restricted granule 

swelling of the KQ starches. The higher pasting temperatures and lower viscosities of the KQ 

starches were likely results of starch annealing and the enhanced amylose-lipid complex 

formation during the development of starch granules. The KQ starch granules had restricted 

swelling after cooking, which were less susceptible to enzyme hydrolysis (Singh, Dartois, & 

Kaur, 2010) and displayed less RDS contents but greater SDS and RS contents than the BQ 

starches. 

 

5. CONCLUSIONS 

 The Tibetan hull-less barley starches contained 24.0-26.9% amylose, 0.41-0.45% 

lipids, and 0.045-0.050% (w/w) phosphorus, in the form of phospholipids. The BQ starches 

showed significantly lower onset-gelatinization temperature but larger gelatinization-

temperature range than the KQ starches. The BQ starches showed significantly greater peak 

viscosities than the KQ starches. After a treatment with 2% sodium-dodecyl-sulphate solution, 

the starches showed significant decreases in pasting temperatures and increases in peak 

viscosities, and the KQ starches showed substantially greater increases in peak viscosities 

than the BQ starches. Annealing of starch and enhanced amylose-lipid complex formation, 

resulting from higher growing temperatures and more rainfall during the growth and 

development of the KQ starches, likely contributed to the differences in thermal and pasting 

properties between the BQ and KQ starches. The cooked KQ starches displayed less RDS 

content but more SDS and RS contents than the BQ starches, resulting from restricted 

swelling of the KQ starch granules compared with the BQ starch granules after cooking. 
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Table 1. Amylose, lipid, and phosphorus contents, and average granule diameters of the hull-

less barley starch a  

  Amylose 

(w/w, %) 

Lipid 

(w/w, %) 

Total phosphorus 

(w/w, %) 

Average granule diameter (μm) 

 
A granules B granules 

BQ4 24.0c±0.1 0.42±0.01 0.049a±0.000 12.0b±3.9 2.0b±0.7 

BQ6 25.0bc±0.7 0.42±0.02 0.048bc±0.000 13.1ab±4.4 2.1ab±0.8 

BQ7 24.8bc±0.0 0.45±0.02 0.048bc±0.000 12.8ab±4.0 2.1ab±0.7 

KQ3 26.9a±0.8 0.42±0.01 0.047c±0.000 14.0a±4.9 2.3a±1.0 

KQ6 26.5ab±0.3 0.45±0.00 0.050a±0.000 13.8a±3.8 2.2a±1.0 

KQ7 26.2ab±0.1 0.41±0.02 0.045d±0.000 13.3a±4.8 2.3a±0.9 

a Values are means ± standard deviations of two replicates. Different letters following the 

mean values within the same columns indicate statistically different mean values (p<0.05). 

 

 

 

 

 

Table 2. Amylopectin branch-chain length distributions a of hull-less barley starches b 

  DP<12 DP13-24 DP25-37 DP>37 Ave.CL c 

BQ4 30.4±0.3 47.0±0.2 10.7±0.6 11.9±0.1 20.7a±0.1 

BQ6 30.3±0.6 46.2±0.7 12.0±2.1 11.5±0.8 20.5a±0.4 

BQ7 30.9±0.3 47.3±0.4 10.1±0.1 11.7±0.1 20.5a±0.1 

KQ3 31.8±0.6 47.5±0.1 9.4±0.4 11.3±0.1 20.2b±0.1 

KQ6 30.7±0.1 46.9±0.3 10.6±0.1 11.8±0.3 20.6a±0.2 

KQ7 30.7±0.5 47.2±0.2 10.3±0.4 11.8±0.1 20.6a±0.0 

a Molar basis. b Values are means ± standard deviations of two replicates. Different letters 

following the mean values within the same columns indicate statistically different mean 

values (p<0.05).  c Average branch-chain length of amylopectin.
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Table 3. Thermal properties of the hull-less barley starches a 

  Gelatinization   Dissociation of retrograded starch 

 To
b (°C) Tc(°C) ΔH(J/g) Tc-To(°C) 

 
To(°C) Tc(°C) ΔH(J/g) Retro.% c 

BQ4 54.9c±0.0 64.3±0.0 10.6±0.1 9.4b±0.0 
 

39.9±0.4 59.5±0.0 2.6±0.0 25.0c±0.2 

BQ6 54.1c±0.1 63.6±0.0 10.5±0.1 9.5b±0.1 
 

40.4±0.6 59.4±0.8 2.2±0.0 21.1e±0.1 

BQ7 54.8c±0.1 65.4±0.0 10.9±0.1 10.6a±0.2 
 

41.4±0.2 60.1±0.4 2.6±0.0 23.9d±0.2 

KQ3 55.4b±0.0 63.1±0.0 10.1±0.1 7.7d±0.0 
 

41.5±0.0 59.5±0.1 2.8±0.0 27.8a±0.0 

KQ6 56.1a±0.0 63.5±0.0 10.3±0.0 7.4d±0.0 
 

42.2±0.0 59.8±0.3 2.7±0.1 26.5b±0.6 

KQ7 55.1b±0.0 63.9±0.2 10.5±0.2 8.8c±0.2   42.3±0.3 59.5±0.2 2.6±0.0 24.6cd±0.2 

 a Values are means and (standard deviations) of two replicates. Different letters following the mean values within the same columns indicate 

statistically different mean values (p<0.05). b To= onset gelatinization temperature, Tc= conclusion temperature, ΔH= enthalpy change. c 

Retrogradation (%) =100% ΔH of dissociation of retrograded starch/ΔH of starch gelatinization.

 

5
9
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Table 4. Rapidly-digestible (RDS), slowly-digestible (SDS) and resistant starch (RS) 

contents of hull-less barley starches a 

RDS (%) SDS (%) RS (%) 

BQ4 78.6a±0.0 12.8bc±0.3 8.6b±0.3 

BQ6 76.8ab±1.2 14.2ab±0.3 9.0b±0.9 

BQ7 78.5a±1.0 11.7c±1.5 9.8ab±0.5 

KQ3 74.7b±0.1 15.5a±0.6 9.8ab±0.5 

KQ6 75.6ab±0.9 14.1ab±0.7 10.3a±0.2 

KQ7 74.6b±1.1 16.0a±0.8 9.4ab±0.3 

a Values are means ± standard deviations of two replicates. Different letters following the 

mean values within the same columns indicate statistically different mean values (p<0.05). 

 

 

 

 

Table 5. Syneresis (%) of maize, wheat, and hull-less barley starch gels (5%, w/w) a 

  0 FTC b 1 FTC 3 FTC 5 FTC 

Maize 0.1±0.0 10.9±1.0 46.6±1.5 53.6±1.2 

Wheat 0.5±0.1 21.6±0.2 57.7±1.2 62.8±1.5 

BQ4 0.1±0.0 14.4±0.2 49.3±0.6 50.3±0.2 

BQ6 0.1±0.0 39.1±0.3 50.2±2.5 50.7±1.7 

BQ7 0.1±0.1 12.1±0.6 51.8±0.1 51.2±0.7 

KQ3 1.3±0.1 49.8±1.5 53.8±1.5 56.4±0.0 

KQ6 0.2±0.0 47.7±2.2 54.5±4.3 54.7±2.0 

KQ7 0.2±0.0 46.3±1.0 47.6±2.9 54.0±2.1 

a Values are means ± standard deviations of two replicates. b FTC = Freeze-thaw cycle.
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Figure 1. Scanning electron micrographs (SEM) of hull-less barley starch granules. A: BQ4; 

B: BQ6; C: BQ7; D: KQ3; E: KQ6; F: KQ7.
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Figure 2. X-ray diffraction patterns and the numbers in the parentheses are percentages 

crystallinity of hull-less barley starches.
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Figure 3. Pasting profiles of native (A) and sodium-dodecyl-sulphate-treated (B) hull-less 

barley starches. 
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Abstract 

 The objective of this study was to understand dosage effects of the waxy gene on the 

structures of amylose and amylopectin and on the properties of corn starch. Reciprocal 

crossing of isogenic normal and waxy corn lines was conducted to develop hybrids with 

different dosages (3, 2, 1, 0) of waxy gene in the endosperm. The amylose content of starch 

and proportions of branch chains of DP 17-30 and extra-long branch chains (DP > 100) of 

amylopectin were negatively correlated with the waxy-gene dosage. Proportions of short (DP 

< 17) and long branch-chains (DP 30-80), however, were positively correlated with the waxy-

gene dosage. The gelatinization conclusion-temperature and temperature-range of the starch 

were positively correlated with the waxy-gene dosage, indicating that amylose facilitated 

dissociation of the surrounding crystalline regions. These results helped us understand the 

function of granule-bound starch synthase I in the biosynthesis of amylose and amylopectin 

and impacts of waxy-gene dosages on the properties of corn starch. 

 

Keywords: waxy gene; dosage effects; branch-chain length distribution; starch properties 
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1. Introduction 

 Corn (Zea mays L.) is the largest crop produced worldwide, followed by rice and 

wheat (FAOSTAT, 2012). Most of the corn is used for livestock feed, and the remaining is 

processed for many food and industrial applications, including corn meal, corn starch, corn 

syrup and high-fructose corn syrup, alcoholic beverage, and fuel ethanol, etc. (USDA ERS, 

2015). Starch is the major component of corn kernels (~72% by dry mass) and the energy 

source for food, feed, and ethanol fuel. Starch of normal (wild type) corn consists of two 

glucans: amylose and amylopectin. Amylose is primarily a linear polysaccharide of D-

glucopyranose units connected by α-1,4 glycosidic bonds with few α-1,6 linked branches 

(Takeda, Tomooka, & Hizukuri, 1993). Amylopectin is a highly branched polysaccharide, in 

which the short linear-chains are connected by α-1,6 glycosidic branch linkages (Tester, 

Karkalas, & Qi, 2004). 

Waxy corn is a naturally occurring corn mutant, and the starch of waxy corn consists 

of almost exclusively amylopectin. Compared with normal corn starch, waxy corn starch 

provides unique functions for many food and non-food applications. For example, waxy corn 

starch is preferably used in frozen foods to improve the freeze-thaw stability, and in textile, 

corrugating, and adhesive industries because of its clear film-forming property (Fergason, 

1994). Waxy corn can be preferred as livestock feed because of its good feed-conversion 

efficiency resulting from the greater digestibility of the waxy starch (Collins, Moran, & 

Stillborn, 2003). 

 The endosperm of waxy corn kernels lacks the enzyme activity of granule-bound 

starch synthase I (GBSSI) encoded by the waxy gene (Denyer, Johnson, Zeeman, & Smith, 

2001). The GBSSI, with a molecular weight of 58-60 kDa, is the only known enzyme 

responsible and required for the biosynthesis of amylose molecules in corn (Denyer et al. 

2001). It has been reported that GBSSI is also involved in the biosynthesis of extra-long 



www.manaraa.com

67 

 

 

 

 

branch-chains of amylopectin in various plants, such as wheat (Yoo & Jane, 2002a), rice 

(Hanashiro et al., 2008), and sweet potato (Kitahara et al., 2007). Some other studies using 

near-isogenic waxy and non-waxy wheat, however, showed contradictory results: non-waxy 

wheat starch consisted of no extra-long branch-chains and GBSSI showed no effects on the 

branch-chain length distribution of amylopectin (Miura, Wickramasinghe, Subasinghe, Araki, 

& Komae, 2002; Yasui, Ashida, & Sasaki, 2009). Yasui et al. (2009) argued that the extra-

long branch-chains of amylopectin in normal or non-waxy starches were possibly 

contamination of amylose molecules resulting from incomplete separation of the amylose 

from amylopectin molecules. 

 The endosperm tissue of corn has three sets of chromosomes, two sets from maternal 

parent and one set from pollen parent (Darrah, McMullen, & Zuber, 2003). Therefore, for a 

single gene, there could be four different dosages (3, 2, 1, 0) in the endosperm. The dosage 

effects of waxy gene on the structures and properties of corn starch are not fully understood, 

and the effects of GBSSI on the biosynthesis of extra-long branch-chains are still being 

debated. 

The objective of this study was to understand the dosage effects of waxy gene on the 

structures of amylose and amylopectin of corn starch and on starch properties. Results 

obtained from this study will add to the understanding of the physiological function of GBSSI 

in the biosynthesis of starch molecules and the properties of starch with different dosages of 

waxy gene. Understanding properties of starch with different waxy-gene dosages can facilitate 

developments of value-added utilizations of waxy and partial-waxy corn starch. 
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2. Materials and Methods 

2.1 Materials 

 Isogenic normal and waxy corn lines were used in this study to minimize the 

interference of different genetic background. Two sets of isogenic normal and waxy corn 

lines were used as parent lines, and reciprocal crossing were conducted to develop corn lines 

with different dosages of the waxy gene in the endosperm: waxy × waxy (3 dosages), waxy × 

normal (2 dosages), normal × waxy (1 dosage), and normal × normal (0 dosage). The Set 1 

samples included the pedigree DKXL370:N11a20-036-002, and the Set 2 samples included 

the pedigree AR16035:S02-615-001. All the corn lines were developed within the USDA-

ARS Germplasm Enhancement of Maize (GEM) Project and grown at the North Central 

Regional Plant Introduction Station farm (Ames, IA) in 2014. Corn ears were harvested and 

dried to approximately 12% moisture and shelled. The pedigree, genotype, and the dosage of 

waxy gene in the endosperm of the corn lines are listed in Table 1. 

 Pseudomonas isoamylase (EC 3.2.1.68, 280 U/mg) was purchased from Megazyme 

International Ireland (Wicklow, Ireland). All other chemicals were reagent grade and were 

purchased from either Sigma-Aldrich Co. (St. Louis, MO) or Fisher Scientific (Pittsburgh, PA) 

and used without further purification. 

2.2 Starch Isolation by Wet-Milling 

 Starches were isolated from the corn kernels using a wet-milling method reported by 

Li, Jiang, Campbell, Blanco, & Jane (2008). 

2.3 Amylose Content of Starch 

 The amylose content of the corn starch was determined using an iodine 

potentiometric- autotitrator (702 SM Titrino, Brinkmann Instrument, Westbury, NY) using a 

method reported by Song & Jane (2000). Lipids of the starch were removed using 85% 

methanol in a Soxhlet extractor for 16 h prior to the analysis. The iodine affinity of amylose 
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used for the calculation was 0.2 (Takeda & Hizukuri, 1987). The amylose content was 

calculated using the equation: 

Amylose (%) = 100% IAs / 0.2, where IAs was the iodine affinity of the starch. 

2.4 Lipid Content of Starch 

Lipids of the starch were extracted following the AOAC method 996.06 (2000). The 

lipid content of the starch was determined gravimetrically after removal of the solvent and 

calculated using the equation: 

 Lipid (%) = Weight of extracted lipids / Weight of the starch (db) × 100%. 

2.5 Fractionation of Amylose 

Amylose of the starch was separated from amylopectin using 1-butanol, following the 

method reported by Jane & Chen (1992) and Schoch (1942). Dispersed starch in an aqueous 

medium (1%, w/v) was mixed with 1-butanol (20%, v/v) and refluxed under mechanical 

stirring in a boiling-water bath for 1 hr. The mixture in a sealed flask was place in a Duwar 

flask filled with boiling water, and the Duwar flask was sealed and allowed to slowly cool 

down to room temperature over 24-30 hr. During the cooling process, amylose formed helical 

complex with 1-butanol, which crystallized and precipitated from the starch dispersion. 

Amylopectin molecules, however, remained in the supernatant. 

2.6 Molecular Weight of Amylose 

Molecular weight of the isolated amylose was determined using a high-performance 

size-exclusion chromatography (HPSEC) following the method of Jiang, Campbell, Blanco, 

& Jane (2010). The HPSEC system consisted of a Prostar 210 pump (Varian, Walnut Creek, 

CA), a refractive-index detector (Prostar 355, Varian, Walnut Creek, CA), and Shodex SB-

804 and SB-803 analytical columns (Showa Denko K.K., Tokyo, Japan). The temperature of 

the columns was maintained at 50 °C in a column oven (Prostar 510, Varian, Walnut Creek, 

CA). The mobile phase was degassed and distilled-deionized water at a flow rate of 0.5 
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ml/min. Maltose, maltotriose, maltotetraose, maltohepaose, and pullulan standards (P10, P20, 

P100, Showa Denko K.K., Tokyo, Japan) were used as references to determine the molecular 

weight of amylose. 

2.7 Molecular Weight and Gyration Radii of Amylopectin 

Molecular weight and gyration radii of the amylopectin were determined using a 

HPSEC equipped with a multi-angle laser-light scattering detector (Dawn DSP-F, Wyatt 

Tech. Corp., Santa Barbara, CA) and a refractive-index detector (HP 1047A, Hewlett Packard, 

Valley Forge, PA) following the method of Yoo & Jane (2002b). Shodex SB-806 and SB-804 

analytical columns (Showa Denko K.K., Tokyo, Japan) were used to separate amylopectin 

from amylose. The temperature of the columns was maintained at 50 °C using a CH-460 

column heater and a TC-50 controller (Eppendorf, Madison, WI). The mobile phase was 

degassed and distilled-deionized water at a flow rate of 0.5 ml/min. 

2.8 Amylopectin Branch-Chain Length Distribution 

Amylopectin of the corn starch was separated from amylose using a gel-permeation 

chromatographic column packed with Sepharose CL-2B gel. The isolated amylopectin was 

debranched using Pseudomonas isoamylase (Megazyme International Irelands, Wicklow, 

Ireland) following the method of Li, et al. (2008). Branch-chain length distribution of the 

debranched amylopectin was analyzed using a HPSEC following the method of Jiang, et al. 

(2010). The HPSEC system consisted of a Prostar 210 pump (Varian, Walnut Creek, CA), a 

refractive-index detector (Prostar 355, Varian, Walnut Creek, CA), and a Shodex SB-803 

analytical column (Showa Denko K.K., Tokyo, Japan). The temperature of the columns was 

maintained at 50 °C in a column oven (Prostar 510, Varian, Walnut Creek, CA). The mobile 

phase was degassed and distilled-deionized water at a flow rate of 0.5 ml/min. 
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2.9 Thermal Properties of the Starch 

Thermal properties of the starch were analyzed using a differential scanning 

calorimeter (DSC, Diamond, Perkin-Elmer, Norwalk, CT). The gelatinization onset (To), 

peak (Tp), and conclusion temperatures (Tc) and enthalpy change (∆H) of the starch were 

determined using a Pyris software (Perkin-Elmer). 

2.10 Pasting Properties of the Starch 

Pasting properties of the starch in an aqueous suspension (8%, w/w, db) were 

analyzed using a rapid visco-analyzer (Newport Scientific, Sydney, Australia) following the 

method of Jane, et al. (1999). The pasting temperature, and the peak, breakdown, and final 

viscosities were determined using the Thermocline software (Newport Scientific). 

2.11 Statistical Analysis 

Data were subjected to ANOVA and Tukey’s multiple comparison analysis using 

PROC ANOVA procedure of SAS 9.4 (SAS Institute, Inc., Cary, NC). The normality of data 

for each variable was investigated using the PROC UNIVARIATE procedure. Because the 

dosage of waxy gene and most of the other variables were not normally distributed (data not 

shown), a Spearman correlation test was used to analyze correlations between the waxy gene 

dosage and the physicochemical properties of the starch. Statistical significance was declared 

at p < 0.05 if without further indication. 

 

3. Results and Discussion 

 Amylose contents and amylose molecular-weights of starches from corn with 

different dosages of waxy gene are shown in Table 2. The amylose contents ranged from 1.6 

to 27.9% for the Set 1 samples and from 0.0 to 26.6% for the Set 2 samples. The amylose 

content was negatively correlated with the dosage of waxy gene (r = -0.98, p < 0.01), which 

was in line with the effects of waxy-gene dosages on wheat starch (Miura et al. 2002; 
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Wichramasinghe & Miura, 2003). The increase in the amylose content, however, was not 

proportional to the decrease in the dosage of waxy gene in the endosperm. For example, the 

relative amylose content increased by 69 or 75%, using the amylose content of the isogenic 

normal corn starch as the reference (100%), when the waxy-gene dosage decreased from 3 to 

2 in the endosperm, whereas further decrease in the waxy-gene dosage from 2 to 1 only 

showed small increase in the relative amylose content by 5 or 6% (Table 2). These results 

were in line with that previously reported (Tsai, 1974). 

 Molecular weight of the isolated amylose ranged from DP 629.8 to 651.3 for the Set 1 

samples, and from DP 637.8 to 646.1 for the Set 2 samples (Table 2). There were no 

significant differences in the molecular weight of amylose between the starch samples with 

different dosages of the waxy gene in the endosperm, indicating that the waxy gene had little 

effects on the molecular weight of amylose. 

 Lipid contents of the starch samples are shown in Table 2. The waxy corn starches 

consisted of little lipids (0.24% for the Set 1 waxy corn and 0.10% for the Set 2 waxy corn). 

Lipid contents of the partial-waxy and normal corn starches ranged from 0.71 to 0.84% for 

the Set 1 samples and from 0.55 to 0.84% for the Set 2 samples. The correlation coefficient 

between the amylose and lipid contents of the starch samples was 0.75, although the 

correlation was not significant (p = 0.086). 

The molecular-weight and gyration radii of amylopectin with different dosages of 

waxy gene are shown in Table 3. The amylopectin molecules of the waxy corn starch 

displayed larger molecular weights and gyration radii than the partial-waxy and normal 

isogenic corn lines containing 2 to 0 waxy-gene dosage(s). These results were consistent with 

that previously reported (Bello-Perez, Roger, Baud, & Colonna, 1998; Yoo & Jane, 2002b). 

The correlation coefficient between the molecular weights of amylopectin and amylose 

contents of the starch samples was -0.66, although the correlation was not significant (p = 
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0.063). For the partial-waxy and normal corn, biosynthesis of amylose competed with that of 

amylopectin for the substrate of adenosine-5’-diphosphate glucose (ADP-Glu), which 

resulted in smaller molecular weight of amylopectin than that of the waxy corn starch (Yoo & 

Jane, 2002a). 

Branch-chain length distributions of the debranched amylopectin molecules 

determined using a HPSEC are shown in Figure 1, and the results are summarized in Table 4. 

Both sets of the samples showed the same trends in the branch-chain length distribution of 

amylopectin with different dosages of waxy gene. The chromatograms showed a major peak 

at DP ~22 and two minor peaks at DP ~13 and DP ~40 for both sets of samples. For the Set 1 

samples, percentages of the extra-long branch chains (DP 100-287) increased from 0.2% to 

2.0% ,and for the Set 2 samples, percentages of the extra-long branch chains (DP 100-256) 

increased from 0.3% to 1.8% with the decrease in the waxy-gene dosage from 3 to 0. 

Percentages of the extra-long branch chains were negatively correlated with the waxy-gene 

dosage (r = -0.93, p < 0.01). It has been reported that extra-long branch chains are present in 

partial-waxy and normal starches from various plants, including wheat, rice, and sweet potato 

(Yoo & Jane, 2002a; Kitahara, et al. 2007; Hanashiro, et al. 2008), and GBSSI is responsible 

for the biosynthesis of extra-long branch chains (Denyer, Clarke, Hylton, Tatge, & Smith, 

1996; Hanashiro, et al. 2008). Yasui et al. (2009) postulated that amylose could have been 

eluted with amylopectin during the GPC separation and the presence of extra-long branch 

chains could be a result of contamination of the amylose. In this study, the largest detectable 

chain lengths of extra-long branch chains were DP 287 for the Set 1 samples and DP 256 for 

the Set 2 samples, which were substantially smaller than the average molecular weight of 

amylose (DP 629.8-651.3 for the Set 1 samples and DP 637.8-646.1 for the Set 2 samples, 

respectively) (Table 2). Therefore, the presence of extra-long branch chains was unlikely the 

contamination of amylose molecules. The negative correlation between the waxy-gene dosage 
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and the proportion of extra-long branch chains further supported that GBSSI was responsible 

for the biosynthesis of extra-long branch chains of amylopectin. 

The HPSEC chromatograms showed that, for both sets of the samples, percentages of 

the short chains (DP < 17) (47.3-51.0% for the Set 1 samples and 46.1-49.9% for the Set 2 

samples) (Table 4) were positively correlated with the waxy-gene dosage (r = 0.94, p < 0.01). 

Percentages of the intermediate chains of DP 17-30 (30.0-33.5% for the Set 1 samples and 

31.2-37.4% for the Set 2 samples) were negatively correlated with the waxy-gene dosage (r = 

-0.86, p < 0.01). Percentages of the long branch-chains (DP 30-80) (16.2-17.9% for the Set 1 

samples and 14.0-17.8% for the Set 2 samples) were positively correlated with the waxy-gene 

dosage (r = 0.76, p < 0.05). It was plausible that, with the presence of GBSSI in the partial-

waxy and normal corn, the short chains (DP < 17) were elongated to the intermediate chains 

(DP 17-30). These results also suggested that GBSSI could synthesize the extra-long branch-

chains by elongating the long branch-chains (DP 30-80), resulting in decreases in the 

proportion of the long branch-chains in the partial-waxy and normal corn starches. More 

studies are needed to understand the mechanisms of the effects of GBSSI on the elongation of 

amylopectin branch-chains. 

Starch thermal properties are shown in Table 5. The gelatinization conclusion-

temperature (74.4-77.0 °C for the Set 1 samples and 72.0-74.4 °C for the Set 2 samples) and 

temperature-range (8.8-11.2 °C for the Set 1 samples and 9.5-12.1 °C for the Set 2 samples) 

were negatively correlated with the amylose content of starch (Table 2). These results were 

in line with that reported on wheat starch (Sasaki, Yasui, & Matsuki, 2000). It is known that 

gelatinization of starch begins at the hilum of the granule and proceeds radially (Hoseney, 

Zeleznak, & Yost, 1986). Amylose is interspersed among amylopectin and is oriented from 

the hilum to the periphery, extending through multiple clusters of amylopectin molecules 

(Jane, 2006). During gelatinization of starch, amylose molecules facilitate dissociation of 
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surrounding crystalline clusters of amylopectin, proceeding from the hilum to the periphery, 

resulting in a lower gelatinization conclusion-temperature and a narrower gelatinization 

temperature-range (Hoseney, et al. 1986). The starch gelatinization enthalpy-change was 

positively correlated with the waxy-gene dosage, resulting from a larger amylopectin-content 

and a greater percentage-crystallinity of waxy starch (Jane, et al. 1999). 

Starch pasting properties are shown in Figure 2, and the results are summarized in 

Table 6. Pasting temperatures of the starch (71.0-73.8 °C for the Set 1 samples and 69.0-

72.5 °C for the Set 2 samples) had no correlation with the waxy-gene dosage but were 

positively correlated (r = 0.81, p < 0.01) with the lipid contents of the starch (Table 2). 

Although there was no correlation between the peak viscosity and the waxy-gene dosage, the 

breakdown viscosity was positively correlated with the waxy-gene dosage (r = 0.83, p < 0.01) 

and the setback viscosity was negatively correlated with the waxy-gene dosage (r = -0.97, p < 

0.01). It has been reported that amylose intertwines with amylopectin and maintains the 

integrity of the starch granule (Hermansson & Svegmark, 1996; Jane, 2007), which reduces 

the breakdown of swollen starch-granules. Amylose participates in gel-network formation 

during the cooling of the starch paste, resulting in a higher setback viscosity (Deffenbaugh & 

Walker, 1989; Jane, et al. 1999; Sasaki, et al. 2000). 

 

4. Conclusions 

 To our knowledge this is the first study to report dosage effects of the waxy gene on 

amylopectin branch-chain length distribution in isogenic corn starch. The negative correlation 

between the waxy-gene dosage and the percentage of extra-long branch chains supported that 

GBSSI was responsible for the biosynthesis of extra-long branch chains. GBSSI also 

increased the proportion of intermediate chains with DP 17-30 and decreased the proportion 

of short chains with DP < 17. The waxy gene showed dosage effects on the amylose content, 
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but no effects on the molecular weight of amylose. The conclusion gelatinization-temperature 

and gelatinization temperature-range of the starch were positively correlated with the waxy-

gene dosage, indicating that amylose facilitates dynamic gelatinization of the crystalline 

structures of amylopectin. The breakdown viscosity of starch was positively correlated but 

the setback viscosity was negatively correlated with the waxy-gene dosage. These results 

showed that GBSSI was responsible for the biosynthesis of both amylose and amylopectin, 

which in turn affected the thermal and pasting properties of the starch. 
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Table 1. Pedigree, genotype, and waxy gene dosage of the endosperm of the GEM corn samples 

 Sample a Pedigree Genotype of endosperm Waxy gene dosage 

Set 1 

wx DKXL370:N11a20-036-002-B wx wxwxwx 3 

wx × N 
DKXL370:N11a20-036-002-B wx × 

DKXL370:N11a20-036-002-B-B-B-B 
wxwxWx 2 

N × wx 
DKXL370:N11a20-036-002-B-B-B-B ×  

DKXL370:N11a20-036-002-B wx 
wxWxWx 1 

N DKXL370:N11a20-036-002-B-B-B-B WxWxWx 0 

Set 2 

wx AR16035:S02-615-001-B wx wxwxwx 3 

wx × N 
AR16035:S02-615-001-B wx ×  

AR16035:S02-615-001-B-B-B-B 
wxwxWx 2 

N × wx 
AR16035:S02-615-001-B-B-B-B ×  

AR16035:S02-615-001-B wx 
wxWxWx 1 

N AR16035:S02-615-001-B-B-B-B WxWxWx 0 
a  wx = waxy corn ; N = normal corn. In each case the female parent line appears first and has the endosperm genotype. 

8
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Table 2. Amylose and lipid contents of starch and amylose molecular-weight of the corn 

starches with different dosages of the waxy gene a 

 

Sample  

waxy 

gene 

dosage 

Amylose 

(%) 

Relative 

amylose 

content 

Amylose 

molecular-

weight (DP) 

Lipid  

(%) 

Set 1 

wx 3 1.6d±0.0 6% N/A b 0.24c±0.06 

wx × N 2 20.9c±0.1 75% 640.5a±10.3 0.75ab±0.02 

N × wx 1 22.4b±0.4 80% 651.3a±16.4 0.84a±0.05 

N 0 27.9a±0.5 100% 629.8a±21.4 0.71b±0.03 

Set 2 

wx 3 0.0d±0.0 0% N/A 0.10c±0.00 

wx × N 2 20.0c±0.1 75% 644.2a±8.2 0.74a±0.04 

N × wx 1 21.5b±0.1 81% 646.1a±9.7 0.84a±0.07 

N 0 26.6a±0.2 100% 637.8a±1.8 0.55b±0.03 
a Values are means ± standard deviations of two replicates. Different letters following the 

mean values within the same columns indicate statistically different mean values within each 

set of the corn starch samples (p<0.05). b Not available. 

 

 

 

Table 3. Amylopectin molecular-weight and gyration radii of the corn starches with different 

dosages of the waxy gene a 

 Sample  Mw (×108 g/mol) Rz (nm) 

Set 1 

wx 11.8a±0.2 380.0±1.4 

wx × N 10.3b±0.6 362.3±5.9 

N × wx 9.5b±0.2 355.4±1.3 

N 10.1b±0.0 363.0±0.8 

Set 2 

wx 12.4a±0.4 387.4±5.6 

wx × N 10.5a±0.7 368.2±7.9 

N × wx 11.7a±0.6 380.2±15.8 

N 11.1a±0.4 376.3±4.9 

a Values are means ± standard deviations of two replicates. Different letters following the 

mean values within the same columns indicate statistically different mean values within each 

set of the corn starch samples (p<0.05).
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Table 4. Amylopectin branch-chain length distribution of the corn starches with different 

dosages of the waxy gene a 

  Sample  DP<17 DP17-30 DP30-80 DP>100 

Set 1 

wx 51.0a±0.5 30.0d±0.2 17.9a±0.2 0.2d±0.0 

wx × N 50.4ab±0.3 30.8c±0.1 17.3b±0.1 0.6c±0.0 

N × wx 49.8b±0.4 31.6b±0.2 16.7c±0.2 1.0b±0.1 

N 47.3c±0.2 33.5a±0.0 16.2c±0.2 2.0a±0.0 

Set 2 

wx 49.9a±0.3 31.2d±0.1 17.8a±0.1 0.3c±0.0 

wx × N 49.3a±0.3 33.0c±0.1 15.6b±0.0 1.2b±0.0 

N × wx 47.3b±0.5 35.6b±0.4 14.8c±0.0 1.4b±0.0 

N 46.1c±0.3 37.4a±0.3 14.0d±0.1 1.8a±0.0 
a Weight averaged. Values are means ± standard deviations of two replicates. Different letters 

following the mean values within the same columns indicate statistically different mean 

values within each set of the corn starch samples (p<0.05). 

 

 

Table 5. Starch thermal-properties of the corn starches with different dosages of the waxy 

gene a 

 Sample  To 
b (°C) Tp (°C) Tc (°C) ∆H (J/g)  Tc -To (°C) 

Set 1 

wx 65.7ab±0.0 71.8±0.1 77.0a±0.4 14.0a±0.1 11.2a±0.4 

wx× N 66.1a±0.1 71.3±0.1 75.9b±0.0 12.3b±0.1 9.7b±0.1 

N × wx 65.2c±0.1 69.9±0.1 74.7c±0.2 12.0c±0.1 9.5b±0.3 

N 65.6b±0.0 69.7±0.0 74.4c±0.1 11.9c±0.0 8.8b±0.0 

Set 2 

wx 62.3a±0.1 68.9±0.0 74.4a±0.0 13.2a±0.1 12.1a±0.2 

wx × N 62.2a±0.1 68.4±0.0 73.5b±0.1 11.6b±0.0 11.3b±0.1 

N × wx 62.3a±0.2 67.7±0.1 72.4c±0.0 11.6b±0.0 10.1c±0.3 

N 62.5a±0.0 67.4±0.1 72.0d±0.1 11.2c±0.1 9.5c±0.1 

a Values are means ± standard deviations of two replicates. Different letters following the 

mean values within the same columns indicate statistically different mean values within each 

set of the corn starch samples (p<0.05). b To= onset gelatinization temperature, Tp = peak 

temperature, Tc= conclusion temperature, ΔH= enthalpy change.



www.manaraa.com

83 

 

 

 

 

Table 6. Starch pasting-properties of the corn starches with different dosages of the waxy gene a 

  Sample  
Pasting 

Temp.(°C) 
Peak (RVU) 

Hold 

(RVU) 
Final (RVU) 

Breakdown 

(RVU) 

Setback 

(RVU) 

Set 1 

wx 71.0b±0.3 217.3a±4.0 78.3±1.6 101.8±2.9 138.9a±2.4 23.4d±1.3 

wx × N 73.8a±0.3 147.8b±2.2 73.6±2.4 142.1±2.2 74.2b±0.2 68.5c±0.2 

N × wx 72.3ab±0.6 150.2b±2.5 75.1±1.2 148.7±1.5 75.1b±1.2 73.5b±0.3 

N 71.4b±0.3 157.6b±1.2 90.4±0.8 182.8±0.6 67.2c±1.9 92.5a±1.4 

Set 2 

wx 69.0c±0.3 221.0a±0.7 72.0±1.7 102.1±0.6 148.9a±1.1 30.1d±1.1 

wx × N 72.3a±0.0 149.9b±2.7 74.1±0.6 146.8±1.6 75.8b±2.1 72.7c±2.2 

N × wx 72.5a±0.2 143.6b±1.4 84.9±1.7 169.8±2.1 58.7c±0.3 84.9b±3.8 

N 71.3b±0.3 148.3b±0.7 95.6±0.4 202.2±2.0 52.5d±0.1 106.6a±2.4 

a Values are means ± standard deviations of two replicates. Different letters following the mean values within the same columns indicate 

statistically different mean values within each set of the corn starch samples (p<0.05). RVU = Rapid-visco unit(s).  

8
3
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Figure 1. Amylopectin branch-chain length distribution of the corn starches with different 

dosages of the waxy gene. 
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Figure 2. Starch pasting properties of the corn starches with different dosages of the waxy 

gene. 
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ABSTRACT 

 Apios americana is a wild legume-bearing plant with edible tubers. Domestication of 

Apios is in progress because of the superior nutritional value and health benefits of the tuber. 

Objectives of this study were to: 1) characterize physicochemical properties of Apios-tuber 

starch; and 2) understand differences in starch structures and properties between the mother 

(seed) and child (progeny) tubers and the mechanism of starch development. Granules of the 

Apios-tuber starch displayed ellipsoidal, rod, or kidney shape with diameter ranges of 1-30 

µm. The mother-tuber starches displayed greater percentage-crystallinity, larger 

gelatinization enthalpy-changes, longer branch-chain lengths of amylopectin, and lower 

pasting viscosity than their counterpart child-tuber starches. The mother-tuber starch of Apios 

2127 displayed distinct two peaks of gelatinization, which were attributed to starch granules 

located at different regions of the tuber having different structures and properties. The mother 

tuber displayed more active starch biosynthesis in the periphery than in the central region of 

the tuber. 

 

 Keywords: Apios; Child tuber; Mother tuber; Starch; Double thermal-transition
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1. INTRODUCTION 

 Apios americana, also known as American groundnut or potato bean, is a wild 

nitrogen-fixing, legume-bearing plant with edible tubers (Belamkar et al., 2015; Wilson, 

Pichardo, Liuzzo, Blackmon, & Reynolds, 1987). It is native to North America and widely 

distributed from Canada to southern Florida (Reynolds, Blackmon, Wickremesinhe, Wells, & 

Constantin, 1990). Apios was a food plant for American Indians, and the tubers were an 

emergency food for the Europeans upon arriving at the American continent in the middle of 

the nineteenth century (Kinugasa & Watanabe, 1992). Because of the low yield of the wild 

Apios tubers, Apios has been cultivated primarily as a garden crop instead of a food crop in 

recent years (Reynolds et al., 1990). 

 Recent studies, however, have shown that Apios tubers are highly nutritious compared 

with major food crops, including potatoes, sweet potatoes, and taros. The protein content of 

Apios tubers on the dry-weight basis ranges 11.1-14.0%, which is more than twice of the 

protein content of potatoes (Wilson et al., 1987; Wilson, Pichardo, Blackmon, & Reynolds, 

1990). Apios-tuber proteins have excellent and balanced contents of essential amino-acids, 

including leucine, isoleucine, phenylalanine, threonine, and valine (Wilson et al. 1987). Apios 

tubers contain 4.2-4.6% lipid on the dry-weight basis, and linoleic acid is the dominant 

(Wilson, Gorny, Blackmon, & Reynolds, 1986). Apios tubers are also rich in iron and 

phosphorus and contain five times the calcium of taros (Kinugasa & Watanabe, 1992). The 

Apios tuber contains a significant amount of isoflavones (Kazuhiro, Nihei, Ogsawara, Koga, 

& Kato, 2011). Animal-feeding studies have shown that ingestion of Apios tubers reduces 

blood pressure, suggesting its hypertension-preventive function (Iwai & Matsue, 2007). 

 Product development using Apios tubers has also received increasing attention. The 

tubers are soft and smooth in texture and taste slightly sweet like potatoes, taros, and 

chestnuts (Kikuta et al., 2011). In Japan, Apios tubers are cooked in different ways, including 
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steaming, boiling, and deep frying, and the Apios-tuber flour is used as an ingredient for 

bakery products, including cookies, donuts, and breads (Kikuta et al., 2011). Chips made 

from Apios tubers displayed a lighter color than potato chips because of the lower reducing-

sugar content of the Apios tuber, which decreases the Maillard reaction during baking 

(Reynolds et al., 1990). 

 Starch is a major component of Apios tubers (~68% dry matters) (Ogasawara, Hidano, 

& Kato, 2006). Physicochemical properties of the Apios-tuber starch, however, have not been 

fully understood (Kikuta et al., 2011). A better understanding of the structures and properties 

of the starch is important for product developments using Apios tubers. It is also important for 

the starch industry to develop new starch-based ingredients with unique functionalities and 

good processing properties using alternative crops (Ji et al., 2003). 

 Hoshikawa (1995) reported the growth patterns of Apios tubers growing in the field. 

The mother (seed) tuber shows a decrease in mass until the full growth of the shoot, followed 

by an increase in mass thereafter until the end of the plant growth. The growth pattern of the 

mother tuber of Apios is similar to that of the root of sweet potato (Kodama, Nomoto, & 

Watanabe, 1957), but is different from other tubers, such as potato and Chinese yam 

(Hoshikawa, 1995). The mother tubers of potato and Chinese yam continue to degenerate 

during the plant growth. These results suggest that both starch degradation and starch 

biosynthesis occur in Apios mother-tuber. Because of the unique growth pattern of Apios 

tubers, characterization of the starch isolated from mother and child tubers would advance 

understandings of the mechanism of starch biosynthesis during the development of Apios 

tubers. 

 Objectives of this study were to 1) characterize physicochemical properties of Apios-

tuber starch; and to 2) understand differences in starch structures and properties between the 

mother and child tubers and the mechanism of starch development in the mother tuber. 
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Results obtained from this study will provide understandings of physicochemical properties 

of the Apios-tuber starch and the mechanism of starch biosynthesis in the mother tuber. 

Understanding properties of the Apios-tuber starch will be useful for the development of 

value-added applications of the starch. 

 

2. MATERIALS AND METHODS 

2.1 Materials 

 Three breeding lines (LA-898, LA-2127, and LA-2155; abbreviated hereafter as 898, 

2127, and 2155) of Apios were grown at the North Central Regional Plant Introduction 

Station (NCRPIS), Ames, IA. The tubers of the three breeding lines harvested in 2012 were 

planted in 2013, and those harvested in 2013 were planted in 2014 as mother tubers to further 

grow and produce child tubers. Mother and child tubers harvested in 2013 and 2014 were 

used in this study. The mother tuber displayed different morphology from the child tuber. The 

mother tuber was connected to both the stolon and the above-ground stem of the plant. The 

end of the tuber where the above-ground stem emerged was designated as the bud end, and 

the opposite end was designated as the distal end. The mother tuber was much larger in size 

(8-9 cm in diameter) than the child tuber (2-4 cm in diameter) (Figure S-1). 

Pseudomonas isoamylase (EC 3.2.1.68, 280 U/mg) was purchased from Megazyme 

International Ireland (Wicklow, Ireland). All other chemicals were reagent grade and were 

purchased from either Sigma-Aldrich Co. (St. Louis, MO) or Fisher Scientific (Pittsburgh, PA) 

and used without further treatments. 

2.2 Starch Isolation by Wet-Milling 

 The tubers were peeled and cut into small pieces (1cm × 1cm × 0.5cm). The cut 

samples were wet-milled using a blender, and starches were isolated following the procedures 

reported by Li, Jiang, Campbell, Blanco, & Jane (2008). 
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2.3 Morphology of Starch Granules 

 Scanning electron micrographs of isolated starch granules were taken using a 

scanning electron microscope (JEOL 5800, Tokyo, Japan) following the methods previously 

reported (Ao & Jane, 2007). The average starch granule size was determined by measuring 

~200 granules using an Infinity Analyze software (version 6.1.0, Lumenera Corp., Canada). 

2.4 Crystallinity of Starch  

 Starch samples were equilibrated in a chamber with 100% relative humidity for 

24 hours. X-ray diffraction patterns of the starch samples were analyzed using a 

diffractometer (Rigaku Ultima IV, Rigaku Americas, TX, USA) with copper Kα emission. 

The copper tube was operated at 44 mA and 40 kV, and the scanning region of the two-theta 

angle (2θ) was from 3° to 35°, with a scanning speed of 1°/min. The crystallinity of the starch 

was calculated using a MDI JADE software (version 6.5, Materials Data Inc., Livermore, 

California, USA). Crystallinity of the starch was calculated using the following equation:  

Crystallinity (%) = 100% × Ac / (Ac + Aa), where Ac is the crystalline area on the X-

ray diffractogram and Aa is the amorphous area. 

2.5 Amylose Content of Starch 

 The amylose content of the Apios-tuber starch was determined using an iodine 

potentiometric-autotitrator (702 SM Titrino, Brinkmann Instrument, Westbury, NY) (Song & 

Jane, 2000). Starch was defatted using 85% methanol in a Soxhlet extractor for 16 h prior to 

the analysis. The iodine affinity of amylose used for the calculation was 0.2 (Takeda & 

Hizukuri, 1987). The amylose content of the starch was calculated using the equation:  

Amylose (%) = 100% × IAs / 0.2, where IAs was the iodine affinity of the starch. 
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2.6 Lipid Content of Starch 

Lipids of the starch were extracted following the AOAC method 996.06 (2000). The 

lipid content of the starch was determined gravimetrically after removal of the solvent and 

calculated using the equation: 

 Lipid (%) = 100% × Weight of extracted lipids / Weight of the starch (db). 

2.7 Branch-chain Length Distribution of Amylopectin 

Amylopectin of the starch was separated from amylose and collected using a gel-

permeation chromatographic (GPC) column packed with Sepharose CL-2B gel. The isolated 

amylopectin was debranched using Pseudomonas isoamylase (Megazyme International 

Irelands, Wicklow, Ireland). The branch chains of the debranched amylopectin were labeled 

with 8-amino-1,3,6-pyrenetrisulfonic acid (APTS) (0.2M APTS in 15% acetic acid), and the 

branch-chain length distribution was analyzed using a fluorophore-assisted capillary 

electrophoresis (P/ACE MDQ) (Beckman Coulter, Fullerton, CA) following the methods 

previously reported (Jiang, Campbell, Blanco, & Jane, 2010; Morell, Samuel, & O’shea, 

1998). 

2.8 Thermal Properties of Starch 

Thermal properties of the isolated starch were analyzed using a differential scanning 

calorimeter (DSC, Diamond, Perkin-Elmer, Norwalk, CT) following the method of Song & 

Jane, (2000). Starch gelatinization onset (To), peak (Tp), and conclusion temperatures (Tc), 

and enthalpy change (∆H) were obtained using a Pyris software (Perkin-Elmer). 

2.9 Characterization of Starches Displaying Double Thermal-Transitions of 

Gelatinization 

 To characterize starches displaying two peaks of gelatinization, a starch sample was 

heated in a DSC to 65 ºC (Step 1 heating), the temperature between the two thermal-

transition peaks in the original thermogram. The sample was cooled down to 20 ºC, and then 
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reheated to 110 ºC (Step 2 heating). The thermograms were obtained using a Pyris software 

(Perkin-Elmer). 

2.10 Isolation of Starch Granules with Different Gelatinization-Temperatures 

 The mother-tuber starch of Apios 2127 displaying two peaks of gelatinization were 

separated to two groups of starch granules: the Group 1 starch gelatinized below 65 ºC and 

the Group 2 starch gelatinized at temperatures above 65 ºC. The Group 2 starch was isolated 

by incubating a starch suspension (1%, w/v) at 65 ºC for 20min to gelatinize the Group 1 

starch. The un-gelatinized Group 2 starch, which maintained a crystalline structure and had a 

greater density than the gelatinized Group 1 starch, was isolated by centrifugation at 1,000 g 

after washing with warm water (65 ºC). The process was repeated for five times. 

2.11 Pasting Properties of Starch 

 Pasting properties of the starch were analyzed using a Rapid Visco-Analyzer 

(Newport Scientific, Sydney, Australia) following the methods of Ao & Jane (2007), with 

minor modifications. A starch suspension (6%, dsb, w/w) was used for the RVA analysis. 

The pasting temperature, and the peak, breakdown, and final viscosities were determined 

using the Thermocline software (Newport Scientific). 

2.12 Statistical Analysis 

Data were subjected to analysis of variance and Tukey’s multiple comparison analysis 

using PROC ANOA procedure of SAS 9.2 (SAS Institute, Inc., Cary, NC). 

 

3. RESULTS AND DISCUSSION 

3.1 Granule Morphology and Crystalline Structures 

Images of Apios-tuber starch granules obtained using a scanning electron microscope 

are shown in Figure 1. The granules displayed smooth surface with the long-axis diameters 

ranging 1-30 µm. Granules with diameters larger than 5 µm showed an ellipsoidal, rod, or 
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kidney shape, whereas granules with diameters smaller than 5 µm showed a spherical or 

ellipsoidal shape (Figure 1). Average granule-diameters and number-percentages of large 

granules (> 5 µm) are shown in Table 1. For the 2013 samples, the child-tuber starches of 

Apios 2127 and 2155 showed significantly (p<0.05) smaller granule-size (8.0 and 8.6 µm in 

diameter, respectively) than their counterpart mother-tuber starches (10.1 and 9.8 µm in 

diameter, respectively). Child-tuber starches of all the varieties showed smaller number-

percentages of large granules (73.0-77.6%) than their counterpart mother-tuber starches 

(78.0-85.9%). For the 2014 samples, the child-tuber starch of Apios 2155 showed smaller 

granule-size (9.8 µm in diameter) and percentage of large granules (73.7%) than the mother-

tuber starch (10.9 µm in diameter and 77.9%, respectively), whereas Apios 898 and 2127 

showed no significant differences in granule size and percentage of large granules between 

the child- and mother-tuber starches. 

X-ray diffraction analyses of Apios-tuber starches showed a typical C-type diffraction 

pattern with strong peaks at 2θ of 5.5°, 15.0°, 17.0°, and 23.0° (Figure S-2). Percentage-

crystallinity of the child-tuber starches ranged 23.4-23.9% for the 2013 samples and 23.0-

24.4% for the 2014 samples, whereas that of the mother-tuber starches ranged 25.6-26.4% for 

the 2013 samples and 25.9-26.2% for the 2014 samples (Table 1). All the child-tuber 

starches showed less crystallinity than their counterpart mother-tuber starches. 

3.2 Amylose and Lipid Contents of Starch 

 Amylose contents of Apios-tuber starches are shown in Table 1. For the 2013 samples, 

the child-tuber starches of Apios 898 and 2127 showed no significant difference in amylose 

contents (32.1 and 32.2%, respectively) from the mother-tuber starches (31.9 and 32.5%, 

respectively), whereas the child-tuber starch of Apios 2155 showed a significantly smaller 

(p<0.05) amylose content (32.1%) than the mother-tuber starch (33.1%). For the 2014 

samples, the child-tuber starch of Apios 898 showed no significant difference in the amylose 
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content (32.5%) from the mother-tuber starch (32.2%), whereas the child-tuber starches of 

Apios 2127 and 2155 showed significantly smaller (p<0.05) amylose contents (32.5 and 

31.8%, respectively) than their counterpart mother-tuber starches (34.4 and 33.2%, 

respectively). The mother-tuber starches that had larger granule-size and consisted of more 

large-granules displayed greater amylose-contents than their counterpart child-tuber starches 

(Table 1). These results agreed with that previously reported for maize starch: the amylose 

content increased with the increase in starch granule-size during the development of the 

starch (Li, Blanco, & Jane, 2007; Pan & Jane, 2000). 

 Lipid contents of the Apios-tuber starches ranged from 0.23 to 0.31% for the 2013 

samples and from 0.19 to 0.32% for the 2014 samples (Table 1). All the samples, except the 

Apios 2155 grown in 2014, displayed a trend that the mother-tuber starch consisted of more 

lipid than the child-tuber starch, although the differences in lipid contents were not significant. 

3.3 Amylopectin branch-chain length 

 The child-tuber starches showed significantly (p<0.05) larger percentages of short 

branch-chains of amylopectin (DP<12, 20.7-21.1% for 2013 samples and 21.1-21.6% for 

2014 samples) than their counterpart mother-tuber starches (19.6-20.0% for 2013 samples 

and 19.4-21.1% for 2014 samples) (Table 2). The child-tuber starches also showed 

significantly smaller percentages of long branch-chains (DP>37, 17.3-17.9% for 2013 

samples and 16.8-18.5% for 2014 samples) than their counterpart mother-tuber starches 

(17.8-18.8% for 2013 samples and 17.4-19.0% for 2014 samples). As a result, the child-tuber 

starches showed shorter average branch-chain length (23.4-23.9 DP for 2013 samples and 

23.0- 24.1 DP for 2014 samples) than their counterpart mother-tuber starches (24.0- 24.5 DP 

for 2013 samples and 23.6- 24.5 DP for 2014 samples). 
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3.4 Starch Thermal Properties 

 DSC thermograms of Apios child- and mother-tuber starches are shown in Figure 2, 

and the data are summarized in Table 3. The child-tuber starches showed significantly lower 

onset gelatinization-temperatures and smaller enthalpy-changes (56.0-57.5 ºC and 14.2-15.2 

J/g for 2013 samples and 56.2-57.2 ºC and 14.5-15.0 J/g for 2014 samples, respectively) than 

their counterpart mother-tuber starches (57.0-59.4 ºC and 14.6-15.7 J/g for 2013 samples and 

57.6-58.3 ºC and 15.3-15.9 J/g for 2014 samples, respectively). The onset-gelatinization 

temperatures of the starches were negatively correlated (r = -0.78, p < 0.01) with the 

percentages of the short branch-chains (DP<12, Table 2), consistent with that previously 

reported (Jane et al., 1999; Srichuwong, Sunati, Mishima, Isono, & Hisamatsu, 2005a). The 

enthalpy change of starch gelatinization reflects the energy required to dissociate the double-

helical crystalline structures of starch (Donovan, 1979). The smaller gelatinization enthalpy-

changes of the child-tuber starches were consistent with the lower percentage-crystallinity of 

the child-tuber starches than that of the mother-tuber starches (Table 1). 

 Almost all the Apios samples grown in both years showed a second peak, a tail or a 

shoulder in the DSC thermogram (Table 3, Figure 2), suggesting segregated thermal-

transitions of starch gelatinization. The shoulders, except Apios 2127 mother-tuber starch, 

were present around 75.2-76.2 ºC for the 2013 samples, and around 72.3-75.9 ºC for the 2014 

samples. Among all the samples, the mother-tuber starch of Apios 2127 grown in 2013 

displayed the most distinctly separated peaks in the DSC thermogram, with the first peak 

(minor peak) at 63.7 ºC and the second peak (major peak) at 72.8 ºC (Figure 2). This pattern 

is rarely observed except for pea starch (C-type polymorph) heated in a salt solution 

(Bogracheva, Morris, Ring, & Hedley, 1997). The mechanism of the two gelatinization-peaks 

of Apios 2127 mother-tuber starch grown in 2013 was further investigated as follows. 
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3.5 The Mechanism of Two Gelatinization-Peaks of Starch 

 The two gelatinization-peaks of starch could result from two independent thermal-

transitions of two groups of starch granules with different gelatinization-temperature or two-

stage thermal-transition of the same starch granules (Bogracheva et al., 1997; Ji et al., 2003). 

Bogracheva, et al. (1997) reported two gelatinization-peaks in the DSC thermogram of pea 

starch (C-type polymorph) when the pea starch was heated in a salt solution. The authors 

demonstrated that the dissociation of crystalline structures during gelatinization of the pea 

starch began in the area around the hilum, where the starch had the B-type polymorph, and 

then propagated radially to the peripheral area, where the starch had the A-type polymorph. 

The pea starch, therefore, displayed a two-stage thermal-transition of gelatinization. 

 A two-step heating experiment was conducted using the method described in Section 

2.9 to understand the mechanism of the two-peak gelatinization of Apios 2127 mother-tuber 

starch. After being heated to 65 ºC and the sample was cooled down and reheated, there was 

only a single peak shown in the thermogram, and the temperature of the peak was consistent 

with that of the second peak in the original gelatinization-thermogram (Figure 3 (A)). After 

being heated to 65 ºC, some granules showed complete loss of Maltese cross, whereas others 

retained either intact or partial Maltese cross (Figure 3 (B)).These results indicated that the 

two gelatinization-peaks corresponded to gelatinization of two different groups of starch 

granules: Group 1 starch gelatinized below 65 ºC and Group 2 starch gelatinized at 

temperatures above 65 ºC. 

 The Group 1 and Group 2 starches were separated by gelatinizing and removing the 

Group 1 starch using the method described in Section 2.10. The Group 2 starch was collected 

and characterized to understand differences in physicochemical properties between the Group 

1 and Group 2 starch. The SEM images of the Group 2 starch granules are shown in Figure 

S-3, which displayed intact granular structures. The Group 2 starch showed a substantially 
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greater number-percentage of large granules (89.6%) and amylose content (34.5%) than the 

native starch (78.0% and 32.5%, respectively) (Table 4). The average branch-chain length 

and percentage of long branch-chains (DP > 37) of the Group 2 starch (DP 24.2 and 18.1%, 

respectively) were slightly greater than that of the native starch (DP 24.0 and 17.8%, 

respectively) (Table 4). These results indicated that the Group 2 starch had more large-

granules, consisted of more amylose, gelatinized at a higher temperature, and retained 

Maltese cross after heating at 65 ºC.  

3.6 Locations of the Group 1 and Group 2 Starch in the Apios Mother Tuber 

 Starches at different locations of the Apios 2127 mother tuber was isolated and 

characterized to understand where the starch granules of the Group 1 and 2 were located in 

the tuber after the second-year growth. Starch granules were isolated from the central region 

and two peripheral regions of the tuber, the bud end that was connected to the stolon and 

above-ground stem and the distal end that was on the opposite side of the bud end (Figure S-

1). Morphology of starch granules is shown in Figure S-3, and the data of granule size are 

summarized in Table 4. The starch located at the central region of the mother tuber showed 

significantly (p<0.05) larger granule-size (average 10.0 µm in diameter) and greater number-

percentage of large granules (79.7%) than the starch located at the bud end (8.8 µm in 

diameter and 74.0%, respectively) and the distal end (7.2 µm in diameter and 61.7%, 

respectively). The starch in the central region also consisted of significantly greater amylose 

content (33.8%) than that at the bud end (30.7%) and the distal end (30.5%) (Table 4). 

Amylopectin branch-chain length distributions of the starches are shown in Table 4. The 

starch in the central region showed a larger proportion of long branch-chains (DP>37, 17.8%) 

and a longer average branch-chain length (DP 24.0) than the starch at the bud end (17.6% and 

DP 23.9, respectively) and the distal end (17.5% and DP 23.7, respectively), although the 

differences were not statistically significant. These results indicated that the Group 1 starch 
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was mostly located in the peripheral regions, whereas the Group 2 starch was mostly in the 

central region of the tuber. 

The Group 1 starch of Apios 2127 mother tuber showed similar gelatinization peak-

temperature (63.7 ºC) (Figure 2) to the counterpart child-tuber starch (64.2 ºC) (Table 3). 

The child tuber and its starch granules were initiated and developed in the second year of 

plant growth, displaying smaller granule-size, less amylose content, and lower gelatinization-

temperature than the mother-tuber starch that developed for two years (Table 1, Table 3). 

The similarity between the Group 1 starch and the child-tuber starch suggested that the Group 

1 starch was synthesized during the second-year growth of the mother tuber in the bud end 

and distal end. On the contrary, the Group 2 starch, located in the central region of the tuber, 

was likely carried over from the previous growing season, further grew in the second year, 

and also annealed for two years. Therefore, the Group 2 starch gelatinized at a higher 

temperature.  

3.7 Starch Pasting Properties 

 The child-tuber starches showed significantly lower (p<0.05) pasting temperatures 

(72.3-74.1 ºC for 2013 samples and 70.9-72.5 ºC for 2014 samples) but higher peak 

viscosities (99.8-119.8 RVU for 2013 samples and 88.2-112.9 RVU for 2014 samples) than 

their counterpart mother-tuber starches (75.4-76.0 ºC for 2013 samples and 73.3-75.9 ºC for 

2014 samples, and 94.3-97.6 RVU for 2013 samples and 84.5-94.0 RVU for 2014 samples, 

respectively) (Table 5). The differences in pasting properties between the child- and mother-

tuber starches could be attributed to the larger amylose and lipid contents of the mother-tuber 

starches than that of the child-tuber starches (Table 1). It is known that amylose-lipid 

complex intertwines with amylopectin and restricts granule swelling, contributing to a higher 

pasting temperature and lower viscosity of the starch (Jane et al. 1999; Srichuwong, Sunati, 

Mishima, Isono, & Hisamatsu, 2005b). In addition, the Apios mother tubers were grown in 
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the field for consecutive two years and went through a longer annealing process. Annealing is 

known to enhance double-helical crystalline structures of starch, reduce the rate of starch 

hydration, and restrict granule swelling (Tester, 1997; Tester, Debon, & Sommerville, 2000), 

which contributes to the higher pasting temperatures and lower viscosities of the mother-

tuber starches. 

 

4. CONCLUSIONS 

 In this study, physicochemical properties of the child- and mother-tuber starches of a 

new food crop, Apios americana, were analyzed, and the mechanism underlying the two-peak 

gelatinization of Apios mother-tuber starch were investigated and illustrated. The mother-

tuber starches of Apios displayed larger granule sizes in general, greater crystallinity, larger 

gelatinization enthalpy-changes, longer branch-chain lengths of amylopectin, and lower 

pasting viscosity than their counterpart child-tuber starches. The mother tubers were growing 

for two years, and the starch went through a further growth and was subjected to a longer 

annealing process, resulting in the greater crystallinity, higher pasting temperature, and lower 

pasting viscosity of the mother-tuber starch. The mother-tuber starch of Apios 2127 showed 

distinct two-gelatinization peaks, which was attributed to two groups of starch granules 

gelatinizing at different temperatures. The starch granules initiated and synthesized in the 

second year of planting located at the bud and distal end of the mother tuber gelatinized at a 

lower temperature, whereas the granules located in the central region of the mother tuber, 

which were likely carried over from previous year and went through a further growth and a 

longer annealing process, gelatinized at a higher temperature. These results indicated that 

starch biosynthesis in the mother tuber during the second year of growth was more active at 

the bud and distal end than in the central region of the tuber. 
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Table 1. Average granule size, percentage of large granules, amylose and lipid contents, and crystallinity (%) of Apios-tuber starches a 

Samples 
Average granule 

diameter (μm) 

Large granules 

(%) b 

Amylose 

(%) 

Lipid 

(%) 

Crystallinity 

(%) 

2013 

898 
Child 9.8a±5.2 77.6 32.1a±0.4 0.23a±0.00 23.9 

Mother 9.4a±4.6 79.1 31.9a±0.0 0.28a±0.05 25.6 

2127 
Child 8.0b±3.8 73.0 32.2a±0.1 0.24a±0.03 23.8 

Mother 10.1a±4.9 78.0 32.5a±0.1 0.26a±0.01 25.7 

2155 
Child 8.6b±4.4 75.8 32.1b±0.3 0.26a±0.05 23.4 

Mother 9.8a±4.5 85.9 33.1a±0.2 0.31a±0.00 26.4 

2014 

898 
Child 9.5a±5.4 75.7 32.5a±0.0 0.27a±0.01 24.4 

Mother 9.1a±4.9 74.2 32.2a±0.5 0.32a±0.06 26.2 

2127 
Child 9.8a±5.8 74.3 32.5b±0.5 0.19a±0.00 24.4 

Mother 9.9a±5.5 75.1 34.4a±0.2 0.21a±0.00 25.9 

2155 
Child 9.8b±5.8 73.7 31.8b±0.3 0.31a±0.02 23.0 

Mother 10.9a±6.5 77.9 33.2a±0.5 0.29a±0.01 26.1 
a Different letters following the mean values within the same columns and same breeding lines indicate statistically different mean values 

between the child and mother tuber starches (p<0.05). 
b Number-percentage of the granules with a granule diameter > 5 µm.
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Table 2. Amylopectin branch-chain length distribution a of Apios-tuber starches b 

Sample DP<12 DP13-24 DP25-37 DP>37 Ave.CL 

2013 

898 
Child 20.7a±0.0 47.8±0.2 13.9±0.0 17.6a±0.1 23.8a±0.1 

Mother 19.8b±0.1 48.1±0.4 14.2±0.1 17.9a±0.2 24.0a±0.1 

2127 
Child 20.9a±0.1 48.0±0.1 13.8±0.0 17.3b±0.0 23.4b±0.0 

Mother 20.0b±0.2 48.3±0.0 13.9±0.2 17.8a±0.3 24.0a±0.2 

2155 
Child 21.1a±0.0 47.1±0.0 13.9±0.0 17.9b±0.0 23.9b±0.0 

Mother 19.6b±0.0 47.8±0.2 14.0±0.1 18.8a±0.3 24.5a±0.2 

2014 

898 
Child 21.6a±0.1 46.0±0.3 13.8±0.0 18.5b±0.2 24.1a±0.2 

Mother 21.1b±0.0 46.3±0.1 13.6±0.2 19.0a±0.0 24.5a±0.2 

2127 
Child 21.1a±0.1 48.2±0.2 14.0±0.1 16.8b±0.2 23.0b±0.1 

Mother 19.6b±0.2 48.8±0.0 14.3±0.0 17.4a±0.1 23.6a±0.1 

2155 
Child 21.4a±0.0 47.6±0.2 14.0±0.2 17.0b±0.0 23.3b±0.2 

Mother 19.4b±0.0 48.1±0.0 14.3±0.0 18.2a±0.0 24.0a±0.0 
a Molar basis. b Different letters following the mean values within the same columns and 

same breeding lines indicate statistically different mean values between the child and mother 

tuber starches (p<0.05). 

 

 

Table 3. Thermal properties of Apios-tuber starches a 

Samples To 
b (ºC) Peak 1(ºC) Peak 2(ºC) Tc(ºC) ΔH(J/g) 

2013 

898 
Child 57.5b±0.3 67.5±0.0 76.0±0.2 79.9b±0.0 14.2b±0.0 

Mother 59.4a±0.2 69.7±0.1 ND 80.6a±0.0 14.6a±0.1 

2127 
Child 56.1a±0.5 64.2±0.7 76.2±0.3 81.0a±0.1 14.2b±0.1 

Mother 57.0a±0.2 63.7±0.2 72.8±0.6 * 80.6a±0.8 15.2a±0.2 

2155 
Child 56.0b±0.3 64.0±0.1 75.2±0.0 81.1a±0.2 15.2b±0.0 

Mother 58.4a±0.3 69.4±0.5 76.0±0.1 81.8a±0.4 15.7a±0.3 

2014 

898 
Child 56.3b±0.1 60.3±0.4 72.3±0.0 77.9b±0.5 15.0b±0.1 

Mother 57.6a±0.2 64.5±0.3 74.9±0.2 82.5a±0.5 15.7a±0.1 

2127 
Child 57.2b±0.1 62.2±0.5 74.9±0.7 80.2b±0.2 14.9b±0.2 

Mother 58.1a±0.0 62.9±0.1 74.9±0.3 81.1a±0.0 15.9a±0.2 

2155 
Child 56.2b±0.2 61.1±0.0 72.8±0.1 79.6b±0.3 14.5b±0.0 

Mother 58.3a±0.1 65.5±0.0 75.9±0.4 82.1a±0.0 15.3a±0.2 
a Different letters following the mean values within the same columns and same breeding 

lines indicate statistically different mean values between the child and mother tuber starches 

(p<0.05). b To= onset gelatinization temperature, Tc= conclusion temperature, ΔH= enthalpy 

change. ND = Not detectable. Peak 1 is the major peak and Peak 2 is the minor peak for all 

the samples except for Apios 2127 mother tuber grown in 2013. * Major peak.
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Table 4. Granule size, percentage of large granules, amylose content, and amylopectin branch-chain length distribution of Apios 2127 

mother-tuber starches a 

Sample 

Average 

granule 

diameter (μm) 

Large 

granules 

(%) b 

Amylose 

(%) 
DP<12 DP13-24 DP25-37 DP>37 Ave.CL c 

Native 10.1a±4.9 78.0 32.5b±0.1 20.0b±0.2 48.3±0.0 13.9±0.2 17.8a±0.3 24.0a±0.2 

Group 2 granules d 10.8a±4.5 89.6 34.5a±0.6 20.0b±0.1 47.9±0.0 14.0±0.0 18.1a±0.1 24.2a±0.1 

Bud end e 8.8b±4.6 74.0 30.7c±0.4 20.1ab±0.3 48.1±0.1 14.2±0.0 17.6a±0.2 23.9a±0.1 

Center 10.0a±4.9 79.7 33.8a±0.1 20.1ab±0.0 48.1±0.4 14.0±0.3 17.8a±0.1 24.0a±0.1 

Distal end 7.2c±4.1 61.7 30.5c±0.3 20.6a±0.1 48.0±0.2 13.9±0.0 17.5a±0.2 23.7a±0.0 
a Different letters following the mean values within the same columns indicate statistically different mean values (p<0.05). b Number-

percentage of the granules with a granule diameter > 5 µm. c Ave.CL: average branch-chain length. d Group 2 granules: the group of starch 

granules of Apios 2127 mother tuber that gelatinized at higher temperatures. e The starch granules isolated from the bud end, center part, and 

distal end (opposite to the bud end) of Apios 2127 mother tuber. 
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Table 5. Pasting properties of Apios-tuber starches a 

  Sample 
Pasting 

Temp.(ºC) 

Peak 

(RVU) 

Hold 

(RVU) 

Final 

(RVU) 

Breakdown 

(RVU) 

Setback 

(RVU) 

2013 

898 
Child 72.3b±0.1 119.8a±2.4 71.5±1.4 124.0±2.8 48.3a±1.0 52.5a±1.4 

Mother 75.4a±0.4 96.5b±0.4 64.5±0.2 113.4±1.6 31.9b±0.2 48.9a±1.5 

2127 
Child 74.1b±0.3 111.5a±1.7 82.0±1.8 144.0±2.1 29.4a±0.1 61.9a±0.2 

Mother 75.8a±0.0 97.6b±1.8 72.1±1.6 128.4±1.5 25.5b±0.2 56.3b±0.1 

2155 
Child 73.8b±0.3 99.8a±2.5 68.8±1.1 123.8±1.1 31.0a±1.4 55.0a±0.0 

Mother 76.0a±0.1 94.3a±1.9 73.7±0.8 125.3±1.1 20.6b±2.8 51.6a±1.9 

2014 

898 
Child 71.4b±0.0 112.9a±0.9 74.3±1.2 128.2±1.2 38.5a±0.3 53.8a±0.0 

Mother 75.9a±0.0 86.5b±0.5 74.0±0.1 124.0±1.1 12.5b±0.5 50.0b±1.1 

2127 
Child 72.5a±0.3 88.2a±0.2 72.0±0.1 128.8±0.5 16.2a±0.4 56.8b±0.4 

Mother 73.3a±0.3 84.5b±0.1 72.5±0.0 134.4±0.6 12.0b±0.1 61.9a±0.6 

2155 
Child 70.9b±0.2 102.7a±2.8 81.2±0.9 135.3±1.6 21.5a±1.9 54.0a±2.5 

Mother 75.6a±0.0 94.0b±1.7 72.1±1.4 117.5±0.1 22.0a±0.3 45.5b±1.5 
a Different letters following the mean values within the same columns and same breeding lines indicate statistically different mean 

 values between the child and mother tuber starches (p<0.05). RVU = Rapid visco-units. 
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Figure 1. Scanning electron micrographs of Apios-tuber starch granules. Scale bar = 20 µm. 
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Figure 2. Starch thermographs of Apios tubers grown in 2013 and 2014. Peak temperatures of starch gelatinization are labeled above 

the peak of gelatinization curves. Arrows indicate the shoulders of the gelatinization curves. 
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Figure 3. (A): DSC thermograms of Apios 2127 mother-tuber starches. The starch with three times of water (w/w) in a DSC pan was heated 

to 65 ºC (Step 1), cooled down to 20 ºC, and re-heated to 110 ºC (Step 2). Group 2 granules: The group of starch granules of Apios 2127 

mother tuber that gelatinized above 65 ºC. (B): Micrograph of starch granules of Apios 2127 mother tuber under polarized light. The starch 

suspension (1%, w/v) was incubated at 65°C for 20min prior to the observation under the microscope. White arrows indicate granules that 

display intact Maltese crosses. Red arrows indicate completely gelatinized granules displaying no Maltese cross. Yellow arrows indicate 

partially gelatinized granules. 
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Supplementary Information 

 

 

 
Figure S-1. Photos of Apios mother (left) and child tubers (right). 
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Figure S-2. X-ray diffraction pattern and crystallinity (%) of Apios-tuber starches.
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Figure S-3. Scanning electron micrographs of Apios 2127 mother tuber starch granules. Scale 

bar = 20 µm. Group 2 granules: The group of starch granules of Apios 2127 mother tuber that 

gelatinized at higher temperature. Granules of bud end, distal end, and center part: The starch 

granules isolated from the bud end, distal end (opposite to the bud end), and center part of 

Apios 2127 mother tuber.  
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GENERAL CONCLUSIONS 

 

 This dissertation research reported effects of growing conditions during the development of 

starch granules and waxy-gene dosage on starch structures and properties. Two Tibetan hull-less 

barley varieties, BQ and KQ, were grown at two locations with different growing temperatures and 

amount of rainfall. The BQ starches showed lower percentage-crystallinity, lower onset-

gelatinization temperature but larger gelatinization-temperature range than the KQ starches. 

The BQ starches showed significantly greater peak-viscosities (>2.1 folds) than the KQ 

starches. After removing the lipids from starch by treating starch with 2% sodium-dodecyl-

sulfate solution, the starches showed significant decreases in pasting temperatures and 

increases in peak viscosities, and the KQ starches showed substantially greater increases in 

peak viscosities than the BQ starches. Annealing of starch and enhanced amylose-lipid 

complex formation, resulting from higher growing temperatures and more rainfall during the 

development of the KQ starches, likely contributed to the differences in thermal and pasting 

properties between the BQ and KQ starches. The cooked KQ starches displayed less rapidly-

digestible starch content but more slowly-digestible and resistant-starch contents than the BQ 

starches, resulting from restricted swelling of the KQ starch granules compared with the BQ 

starch granules after cooking. 

 Different dosages of waxy gene (3, 2, 1, 0) in the endosperm of corn were developed 

by reciprocal crossing of isogenic normal and waxy corn lines. The negative correlation 

between the waxy-gene dosage and the percentage of extra-long branch chains supported that 

GBSSI was responsible for the biosynthesis of extra-long branch chains. GBSSI also 

increased the proportion of intermediate chains with DP 17-30 and decreased the proportion 

of short chains with DP < 17. The waxy gene showed dosage effects on the amylose content, 

but no effects on the molecular weight of amylose. The conclusion gelatinization-temperature 

and gelatinization temperature-range of the starch were positively correlated with the waxy-
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gene dosage, indicating that amylose facilitates dissociation of surrounding double-helices of 

amylopectin. 

 Apios americana is a new food crop with high nutritional-values and health benefits. 

The seed (mother) tuber of Apios has a unique growing pattern compared with other tubers, 

such as potato and Chinese yam. The mother-tuber starches of Apios displayed larger granule 

sizes in general, greater crystallinity, larger gelatinization enthalpy-changes, longer branch-

chain lengths of amylopectin, and lower pasting viscosity than their counterpart child-tuber 

starches. The mother-tuber starch of Apios 2127 showed distinct two-gelatinization peaks, 

which was attributed to two groups of starch granules gelatinizing at different temperatures. 

The Group 1 starch with smaller granule-size and less amylose-content gelatinized at a lower 

temperature and located more at the bud and distal end of the mother tuber. The Group 1 

starch displayed similar granule-sizes and thermal properties to the counterpart child-tuber 

starch, indicated that the Group 1 starch initiated and synthesized in the second year of 

growing of the mother tuber. These results indicated that starch biosynthesis in the mother 

tuber during the second year of growth was more active at the bud and distal end than in the 

central region of the tuber. 
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